

1. Schematic SC25E600, Phase Locked Loop Board, page 3-19 IC9 no longer in circuit, jumper from pin 5 to pin 8 change C 7 from $.0033 \mu \mathrm{f}$ to $.0027 \mathrm{\mu f}$ change R32 from 240 ohms to 120 ohms change ICl6 from 7402 to 74 CO 2 change IC19 from 7427 to 74LS27
2. Schematic SC26D001, Analog Torque Board, page 3-21 For 110-14 Hi/Lo (-25) Table of Optional/Variable components change R92 from $8.2 k$ to $3.6 k$ ohms
3. For Option 7 only:

Schematic SC27D055, Bias and Erase Board, page 5-13 change R74 to 12 k ohms change C35 to 2200pf change Ll to $910 \mu \mathrm{H}$ add a 470pf cap from plug 7, pin 9 (Bias Hi) to ground
4. Schematic SC2700c0059, Monitor Amp Board, page 5-25 change Cl3 \& Cl6 from 15MF35v-CTAIO to 22 MF 25 V -CLY
5. Schematic SC26DO33 (page 6-3) and SC26DO27 (page 6-5) Power Supply \& Motor Driver Board change R24 \& R25 from 470 k to 330 k on both schematics
6. Schematic SC26B1008, Electronic Flutter Damper Board, page 3-25 change Cl03 from . 047/250 to . $1 / 250$.
7. Schematic SC25B287, Capstan Tachometer Board, page 3-35
change R2 from 3.3 megohm to 1.3 megohm. add a 1.3 megohm from Pin 1 , ICl to ground.

JH•110 SERIES PROFESSIONAL TAPE RECORDERS

THIRD PRINTING - APRIL, 1982
INTRODUCTION OPERATING PROCEDURES TAPE TRANSPORT RTZ III AUTO LOCATOR AUDIO ELECTRONICS
POWER SUPPLY MAINTENANCE
TROUBLESHOOTING SPARE PARTS KITS UPGRADE KITS
APPENDICES

The JH-110 Series includes the following systems:
the JH-110B System - 101/2" reel - 1, 2 and 4 track - $1 / 4^{\prime \prime}$ and $1 / 2$ " tape
the JH-110B-14 System - 14" reel - 1, 2 and 4 track - $1 / 4$ " and $1 / 2$ " tape
the JH-110C-8 System - $101 / \mathbf{2}^{\prime \prime}$ reel - 8 track - 1 " tape
the JH-110BC System - 30cm reel - DIN stereo broadcast recorder
the JH-110BX System - 10 $1 / 2$ " reel $\mathbf{- 1}$ or 2 track broadcast recorder
the JH-110M System - 14" reel - disc mastering reproducer

JH-110B

TABLE OF CONTENTS

SECTION 1 - INTRODUCTION

1.1 General Information 1-1
1.2 Transports 1-3
1.2.1 JH-110B $1-4$
1.2.2 JH-110B-14 1-4
1.2.3 JH-110C-8 1-6
1.2.4 JH-110BC 1-9
1.2.5 JH-110BX 1-9
1.2.6 JH-110M 1-12
1.3 Audio Electronics 1-15
1.3.1 Standard Audio Electronics 1-15
1.3.2 Broadcast Audio Electronics (JH-110BC) 1-16
1.3.3 Broadcast Audio Electronics (JH-110BX) 1-16
1.3.4 Mastering Audio Electronics 1-17
1.4 RTZ III and AutoLocator III 1-18
1.4.1 RTZ III 1-18
1.4.2 RTZ IIIM 1-19
1.4.3 AutoLocator III 1-19
1.5 Power Supply 1-19
1.6 Options 1-21
1.7 Accessories 1-21
SECTION 2 - OPERATING PROCEDURES
2.1 Controls and Indicators 2-1
2.2 Operating Procedures 2-8
2.2.1 Transport Motion Controls 2-8
2.2.2 Reference and Speed Controls 2-10
2.2.3 RTZ III Autolocator Controls 2-11
2.2.4 Audio Controls 2-12
SECTION 3 - TAPE TRANSPORT
3.1 General Description 3-1
3.2 Control Logic 3-1
3.3 Capstan Servo System 3-8
3.3.1 Phase Locked Loop 3-8

TABLE OF CONTENTS (continued)

3.3.2 Reference Frequency 3-10
3.4 Tape Tension Servo System 3-12
3.4.1 Idle Servo Loops 3-14
3.4.2 Play Servo Loops 3-14
3.4.3 Fast Servo Loop 3-14
Tape Transport Schematics 3-17
SC25D027 Control Logic Board 3-17
SC25E600 Phase Locked Loop Board 3-19
SC26D001 Analog Torque Board 3-21
SC25D416 Interface/Lamp Driver Board 3-23
SC26B1008 Electronic Flutter Damper Board 3-25
SC25B042 Solenoid Driver Board 3-27
SC26B160 Photo Sensor Board 3-29
SC25E085 Transport Mother Board 3-31
WD26E666 Interconnect Harness 3-33
SC25B287 Capstan Tach Board 3-35
SC26C150 Remote Cable 3-37
WD27D940 Remote Control Cable, JH-110C 3-39
SC26C003 Head Connector 3-41
SC28F044 Interconnect Harness, JH-110M $3-43$
SC26B1003 Remote MVC 3-45
TW27D-43 Head Assembly 3-47
TW27D-47 Pinch Roller Assembly 3-49
TW27D-45 Tape Lifter Assembly 3-51
TW27D-81 Electronic Dancer Arm Assembly 3-53
TW27D-44 Dancer Arm Assembly (Air Dashpot) $3-55$
TW27D-49 Reel Motor Brake Assembly 3-57
TW27D-46 Head Shield Assembly 3-59
TW27D-48 Capstan Motor and Tach Assembly 3-61
TW27C-34 Rear Connector Pin Outs 3-63
TW27C-35 Control Panel Replacement Parts 3-65
SECTION 4 - RTZ III AND AUTOLOCATOR III
4.1 General Description 4-1
4.1.1 RTZ III 4-1
4.1.2 AutoLocator III 4-2
4.2 Hardware Functional Description 4-3
4.3 Program Description 4-6
4.4 RTZ IIIM Lathe Control Outputs 4-6
4.4.1 Scully Lathe 4-6
4.4.2 Neumann Lathe 4-6
4.4.3 Interfacing Information 4-6
RTZ III Schematics
SC25E611 Processor Board 4-9
SC25C609 Display Board 4-11
SC25C610 Display Board, A/L III 4-13
SC25C625 Processor Plug On Board 4-15
SC25B617 Data and Matrix Interconnect 4-17
WD27D939 Remote Cable, A/L III 4-19
SC26D191 JH-47 Remote Readout 4-21

TABLE OF CONTENTS (continued)

WD26B193 JH-47 Remote Readout Cable 4-23
TW90E-14 A/L III Assembly 4-25
SECTION 5 - AUDIO ELECTRONICS
5.1 General Description 5-1
5.2 Record Mode 5-2
5.3 Reproduce Mode 5-5
5.4 Broadcast Audio Electronics 5-5
5.5 Mastering Audio Electronics 5-6
5.6 Eight Track Remote 5-6
Audio Electronics Schematics 5-9
SC27D914 Record Board 5-9
SC27D913 Reproduce Board 5-11
SC27D055 Bias and Erase Board 5-13
SC27D916 I/O Amp Board 5-15
SC27E917 Audio Mother Board 5-17
SC27E080 Broadcast Amp Board 5-19
SC27E915 Front Panel EQ Board 5-21
SC27D005 Strip Board. 5-23
SC27C059 Monitor Amp Board 5-25
SC27C937 Remote Master Switching Board 5-27
SC27D938 Remote Channel Status Board 5-29
WD27B932 Channel Status Cable 5-31
WDA27B931 Audio Drawer Remote Harness 5-33
TW27E080 Remote Control Assembly 5-35
SECTION 6 - POWER SUPPLY
6.1 General Description 6-1
6.2 Motor Driver Board 6-1
6.3 Voltage Measurements 6-2
6.4 Power Supply Schematic
SC26D033 Power Supply \& Motor Driver Board 6-3
SC26D027 Power Supply \& Motor Driver Board 6-5
SECTION 7 - MAINTENANCE
7.1 Equipment Needed 7-1
7.2 Tape Path Adjustments 7-2
7.2.1 Turntable Height 7-2
7.2.2 Head Height 7-3
7.2.3 Head Zenith 7-3
7.3 Capstan Pinch Roller Adjustment 7-4
7.4 Tape Lifter Adjustments 7-5
7.5 Dancer Arm Adjustments 7-5
7.5.1 Air Dashpot Dancer Arm 7-5
7.5.2 Electronic Dancer Arm 7-7
7.6 Reel Motor Brakes 7.7

TABLE OF CONTENTS (continued)

7.7 Tape Tension 7-8
7.8 Capstan Speed 7-10
7.9 Manual Velocity Control Test \& Adjustments 7-11
7.10 Tape Load Photo Sensor Adjustments 7-11
7.11 Equalization and Overbiasing 7-11
7.12 Audio Electronics Alignment 7-12
7.12.1 Channel VU Meter Calibration 7-12
7.12.2 Reproduce Input Balance 7-12
7.12.3 Head Wrap Adjustments 7-12
7.12.4 Reproduce Level Adjustments 7-13
7.12.5 Azimuth Adjüstments 7-14
7.12.6 Repro Equatization Adjustments 7-14
7.12.7 Erase Adjustments 7-15
7.12.8 Bias Adjustments 7-16
7.12.9 Over-Bias Level 7-17
7.12.10 Record Adjustments 7-17
7.12.11 Record Equalization Adjustments 7-18
7.12.12 Reproduce Low Frequency EQ Adjustments 7-18
7.12.13 Record Linearity Adjustments 7-19
7.12.14 Noise Tests 7-20
7.13 Quick Alignment Check 7-20
7.14 Scrape Flutter Filter 7-24
SECTION 8 - TROUBLESHOOTING
8.1 Introduction 8-1
8.2 Control Logic Board 8-1
8.3 Analog Torque Board 8-6
8.4 Power Supply Motor Driver Board 8-7
8.5 Phase Locked Loop Board 8-8
8.6 Audio Electronics 8-10
8.7 RTZ III 8-12
SECTION 9 - SPARE PARTS KITS
SECTION 10 - UPGRADING KITS
10.1 Possible Configurations 10-1
10.2 Upgrading A Mono Machine To A Stereo Machine 10-1
10.3 Upgrading A Two Track Machine To A Four Track Machine 10-2
10.4 Installing An Additional Play Head $10-3$
APPENDICIES
WARRANTY

LIST OF ILLUSTRATIONS

FIGURE NUMBER TITLE
1-1 V.P. Cabinet Dimensions 1-2
1-2 H.P. Cabinet Dimensions 1-2
1-3 JH-110B Transport Deck 1-3
$1-4$ JH-110BC Transport 1-9
1-5 JH-110M Transport 1-12
1-6 Audio Panel 1-15
$1-7$ Broadcast Audio Panel 1-17
$1-8$ Mastering Audio Panel 1-17
$1-9$ RTZ III Panel 1-18
1-10 RTZ IIIM Panel 1-18
2-1 Transport Control Panel 1-22
2-2 JH-110M Fast Motion Limit Control 2-1
2-3 JH-110B-14 Torque Limit Switches 2-2
2-4 Reference and Speed Controls 2-2
2-5 RTZ III Controls 2-3
2-6 RTZ IIIM Controls 2-3
2-7 Audio Controls and Indicators 2-4
2-8 Broadcast Audio Controls and Indicators $2-5$
2-9 Mastering Audio Controls and Indicators 2-6
2-10 Transport Motion Controls 2-9
2-11 RTZ III Display 2-12
2-12 Audio Controls 2-13
$3-1$ Transport Simplified Block Diagram 2-16
3-2 Tape Load and Stop Commands 3-3
3-3 Play and Record Commands 3-4
3-4 Fast Forward Command 3-5
3-5 Rewind Command 3-6
3-6 Edit and Edit Commands 3-7
3-7 MVC and Tape Lifter Commands 3-8
3-8 Capstan Servo Block Diagram 3-9
3-9 Internal Reference Circuit, Fixed 3-10
3-10 Internal Reference Circuit, Variable 3-11
3-11 External Reference Circuit, with Signal 3-11
3-12 External Reference Circuit, without Signal 3-12
3-13 Tape Tension System Block Diagram 3-13

LIST OF ILLUSTRATIONS (continued)

4-1A RTZ III Block Diagram 4-4
4-1B AutoLocator III Block Diagram 4.5
4-2 Background Loop Flowchart 4-7
4-3 Mastering Interface 4-8
5-1 Record Mode Block Diagram 5-3
5-2 QUIOR Timing Diagram 5-4
5-3 Repro Mode Block Diagram 5-7
5-4 Monitör Amp Block Diagram 5-8
7-1 Tape Path 7-2
7-2 Head Adjustments 7-3, 7-13
7-4
Tape Lifter Assembly
Tape Lifter Assembly
7-6
7-4 Dancer Arm Assembly
7-7
7-5 Brake Adjustments
7-6 Repro Card Adjustments 7-13, 7-19, 7-21
7-7 Erase and Bias Adjustments 7-15
7-8 Bias Card Adjustments 7-17, 7-227-9
7-18, 7-237-10Record Card Adjustments
Intermodulation Distortion Curves 7-19
7-11 Weighting Network 7-20
7-12 Scrape Filter Removal 7-24
7-13 Scrape Filter Disassembly 7-25

LIST OF TABLES

TABLE NUMBER TITLE
1-1 Specifications, JH-110B and JH-110B-14 Transports 1-5
1-2 Specifications, JH-110C-8 Transport $1-7$
1-3 Specifications, JH-110BC Transport 1-10
1-4 Specifications, JH-110M Transport 1-13
1-5 Specifications, Standard Audio Electronics 1-16
1-6 Specifications, Broadcast Audio Electronics 1-16
$1-7$ Specifications, Mastering Audio Electronics 1-18
1-8 Specifications, RTZ III and A/L III 1-19
1-9 Input Power Specifications 1-19
$1-10$ Ordering Numbers 1-20
6-1 Power Supply Outputs 6-1

JH-110C-8

SECTION I INTRODUCTION

1.1 General Information

The $\mathrm{JH}-110$ series of professional tape recorders consists of a wide range of models designed for a variety of applications. Models are available for use with $1 / 4$ inch, $1 / 2$ inch, and one inch magnetic tape, for mono, stereo, 4 -track, and 8 -track recordings. All models accommodate 10-1/2 inch or smaller metal or plastic reels; some models accommodate up to 14 inch reels. DIN hub adapters can be used with any model.

JH -110B tape recorders are available in two tape speed ranges. High speed transports operate at $7-1 / 2,15$, and 30 inches per second (19,38 , and 76 cm / s); low speed transports operate at 3-3/4, 7-1/2, and 15 inches per second ($9-1 / 2,19$, and $38 \mathrm{~cm} / \mathrm{s}$). Changing the speed of the transport automatically selects the proper audio equalization for that speed. Tape speed can also be controlled by an
external source or by a variable internal source for operation at non-standard speeds.

There are two cabinet styles for the JH-110B, the variable profile cabinet and the high profile cabinet. The variable profile cabinet houses from one to four channels of record/playback electronics, the transport, and its power supply. The high profile cabinet houses from one to eight channels of record/playback electronics, the transport, and its power supply.

Both cabinets are mounted on casters for mobility. The record/playback audio electronics are mounted in drawers and the transport base is hinged, making all components easily accessible. All models can also be ordered unmounted for installation in standard 19 inch equipment cabinets. Cabinet dimensions and weights are given in figures 1-1 and 1-2.

Figure 1-1 Variable Profile Cabinet Dimensions

Figure 1.2 High Profile Cabinet Dimensions

1.2 Transports

There are basically six models of the JH-110B tape transport:
the standard JH-110B $101 / 2$ inch reel transport the JH-110B-14 fourteen inch reel transport
the JH-110C-8 eight track transport the JH-110BC DIN broadcast transport the $\mathrm{JH}-110 \mathrm{BX}$ broadcast transport the JH-110M disc mastering transport

There are a variety of options for each model to fit the user's specific needs.

Figure 1-3 JH-110B Transport Deck

1.2.1 JH-110B

The JH-110B, shown in Figure 1-3, is the standard model three speed playback and record tape transport. Full width $1 / 4$ inch, two track $1 / 4$ inch, and four track $1 / 2$ inch tape versions are available. All versions can use 3 inch to 10-1/2 inch metal or plastic reels. A torque limit switch lowers the starting torque of the reel motors for small reels or for delicate tapes.

Available as standard equipment on all the $\mathrm{JH}-110 \mathrm{~B}$ decks is the RTZ III autolocator. The autolocator returns the tape to the zero position, or positions the tape at any of four programmable positions. A LED display displays the tape position in minutes and seconds of actual playback time, or the tape speed in inches per second.

During playback and record modes, a ceramic capstan and pinch roller arrangement controls the tape speed. A phase locked loop servo system drives the dc capstan motor. The servo locks the capstan speed to a crystal oscillator reference. A reference switch can alternatively select a voltage controlled oscillator (VCO) or an external signal as the reference for the phase locked loop. The VCO allows variable capstan speed control for operating at any speed 20% above or below the standard speeds. The transport will accept either a clock frequency (19.2 kHz) or a variable dc level (-5 to +5 volts) as an external reference input.

Two servo controlled dc motors regulate the tape tension, keeping it constant during all modes of operation. An infrared tape load sensor brakes the supply and take up reel motors at the end of roll, when the tape breaks, or when the tape is removed from the sensor slot. An Edit switch can
disable the tape tension servo allowing the reels to be moved by hand without resistance from the motors. The manual velocity control (MVC) joystick gives complete control of the tape's motion and speed from either the stop mode or the forward/rewind modes.

To facilitate head alignment and maintenance, the heads are mounted on a precision machined head bridge assembly. Loosening two hex screws separates the head bridge from the transport deck. Removing the head bridge does not affect the head alignment. Swapping head assemblies and roller guides quickly converts $1 / 2$ inch tape machines to $1 / 4$ inch tape.

Standard head bridges contain three heads: reproduce, record/cue and erase. Additional mounting space is provided for a preview head which may be ordered as an option. Tape lifters move the tape away from the heads during the fast forward and rewind modes to reduce head wear.

The JH-110B mounts in the variable profile cabinet; its dimensions are indicated in Figure 1-1. Specifications for the $\mathrm{JH}-110 \mathrm{~B}$ are listed in Table 1-1.

1.2.2 JH-110B-14

The JH-110B-14 contains all the features of the $\mathrm{JH}-110 \mathrm{~B}$ plus the capability of mounting 14 inch reels. Three torque selection switches adjust the reel motor torque for different size and weight reels. The JH-110B-14 also mounts in the variable profile cabinet.

Specifications for the JH-110B-14 are listed in Table 1-1.

TABLE 1-1 SPECIFICATIONS JH-110B and JH-110B-14

Reel Size

JH-110B
JH-110B-14
Tape Width

Tape Speeds
High Speed (Standard) Fixed

Variable

Low Speed (Option)
Fixed

Variable

Long Term Sp
Tape Tension
$1 / 4$ inch
$1 / 2$ inch

Start Time

Rewind Time

Wow and Flutter

3 to $101 / 2$ inches 3 to 14 inches
$1 / 4$ inch full width
$1 / 4$ inch 2 track
$1 / 2$ inch 4 track
$1 / 2$ inch 2 track
$71 / 2,15, \& 30 \mathrm{ips}$ ($19,38 \& 76 \mathrm{~cm} / \mathrm{s}$)

6 to 36 ips
(15 to $91 \mathrm{~cm} / \mathrm{s}$)
$33 / 4,71 / 2 \& 15 \mathrm{ips}$ ($91 / 2,19 \& 38 \mathrm{~cm} / \mathrm{s}$)

3 to 18 ips (8 to $46 \mathrm{~cm} / \mathrm{s}$)
better than 0.02%
$51 / 2 \pm 1 / 4$ oz.
$53 / 4 \pm 1 / 4 \mathrm{oz}$.
at all speeds
beginning to end of reel
900 msec @ 30 ips
500 msec @ 15 ips
500 msec @ $71 / 2 \mathrm{ips}$
110 sec for 2500 ft . 170 sec for 4800 ft .
$30 \mathrm{ips}<0.020 \%$
$15 \mathrm{ips}<0.030 \%$
$71 / 2 \mathrm{ips}<0.045 \%$

NAB or EIA, plastic or metal reels, DIN hubs optional

NAB or DIN track separation

Phase locked loop dc capstan controlled referenced to fixed crystal oscillator or variable VCO output

Measured between capstan and roller guide

To 0.1\% DIN 45507 flutter with $101 / 2$ inch reels

1.2.3 JH-110C-8

The JH-110C-8 is the eight track version of the $\mathrm{JH}-110 \mathrm{~B}$. This transport uses one inch wide recording tape mounted on $10-1 / 2$ inch or smaller reels. Monitor input and record ready status for each channel can be selected from the remote control unit or from the audio front panel switches. The remote control unit also contains mo-
tion control switches which duplicate the functions of the switches on the transport.
The JH-110C-8 uses the AutoLocator III mounted directly above the remote unit rather than the deck-mounted RTZ III. The AutoLocator III provides additional memories, a repeat function, and variable tape speed control.

The $\mathrm{JH}-110 \mathrm{C}-8$ mounts in the high profile cabinet; its dimensions are indicated in Figure 1-2. Specifications for the $\mathrm{JH}-110 \mathrm{C}-8$ are listed in Table 1-2. The AutoLocator III and the remote con-
trol unit mount on the $\mathrm{JH}-20$ accessory stand and connect to the transport via a 35 -foot cable harness.

TABLE 1-2 SPECIFICATIONS JH-110C-8

Reel Size
Tape Width
Tape Speeds
Fixed

Variable

Long Term Speed Stability
Tape Tension
Start Time
Rewind Time
Wow and Flutter
Frequency Range
Record/Reproduce
(Using Ampex 456 tape)

Signal to Noise*

Record/Reproduce referenced to $510 \mathrm{nWb} / \mathrm{m}$

Weighted $\mathrm{dB}(\mathrm{A})$
$101 / 2$ inch max
1 inch 8-track
$71 / 2,15, \& 30 \mathrm{ips}$ $(19,38 \& 76 \mathrm{~cm} / \mathrm{s})$

6 to 36 ips
(15 to $91 \mathrm{~cm} / \mathrm{s}$)
better than 0.02\%
$6 \pm 1 / 4 \mathrm{oz}$.
at all tape speeds beginning to end of reel

900 msec @ 30 ips 500 msec @ 15 ips $500 \mathrm{msec} @ 71 / 2 \mathrm{ips}$

110 sec for 2500 ft .

30 ips $<0.015 \%$	DIN 45507 weighted
15 ips $<0.020 \%$	DIN 45507 weighted
$71 / 2$ ips $<0.030 \%$	DIN 45507 weighted

30 ips , AES
15 ips, NAB $71 / 2 \mathrm{ips}$, NAB

30 ips, AES
$15 \mathrm{ips}, \mathrm{NAB}$
$71 / 2$ ips, NAB
30 ips, AES 70
15 ips, NAB
$71 / 2 \mathrm{ips}$, NAB6867

TABLE 1-2 SPECIFICATIONS (continued)

Harmonic Distortion*
1 kHz fundamental
at $510 \mathrm{nWb} / \mathrm{m}$

Depth of Erasure
referenced to $250 \mathrm{nWb} / \mathrm{m}$
better than 80 dB at 1 kHz
Bias and Erase Frequency
120 kHz

* Typical values given. Specifications are largely dependent on tape formulation. Also, the performance of any particular type of tape varies from batch to batch.

1.2.4 JH-110BC

The JH-110BC is a two speed playback and record broadcast tape deck. It can be operated in either DIN stereo or mono modes. The broadcast deck uses $1 / 4$ inch recording tape and will accommodate any size reel or platter up to 30 cm in diameter. Built-in tape scissors and a tape marker are included for editing.

This transport is equipped with the broadcast version audio electronic drawers which include a monitor amplifier and speaker. Standard equipment also includes the RTZ III autolocator.

Specifications for the JH-110BC are listed in Table 1-3.

1.2.5 JH-110BX

The JH-110BX is a two-speed ($71 / 2,15 \mathrm{ips}$) playback and record tape deck designed for broadcast applications. It uses $1 / 4$-inch recording tape on reels up to $101 / 2$ inches in diameter. Both monaural and two-track versions are available. The RTZ III is standard equipment on the JH-110BX.

This transport comes equipped with audio electronics similar to the standard JH -110B electronics. The JH-110BX does not include cue (sync) reproduce mode or instant NAB/IEC standard switching.

Specifications for the JH-110BX are comparable to the JH-110B.

Figure 1-4 JH-110BC Transport

TABLE 1-3 SPECIFICATIONS JH-110BC

Reel Size	30 cm max DIN		DIN hubs standard
	3 to $113 / 4$ inch EIA or NAB		Reel locks optional
Tape Width	1/4 inch 2-track		DIN stereo
Tape Speeds			
Fixed	$71 / 2$ and15 ips (19 and $38 \mathrm{~cm} / \mathrm{s}$)		Phase locked loop dc capstan control referenced to fixed
Variable	$\begin{aligned} & 2 \text { to } 22 \mathrm{ips} \\ & \text { (5 to } 56 \mathrm{~cm} / \mathrm{s}) \end{aligned}$		crystal oscillator or variable VCO
Long Term Speed Stability	better than 0.02\%		
Tape Tension	$5^{1 / 2} \pm 1 / 4 \text { oz. }$ at all tape speeds beginning to end of		Measured between capstan and roller guide
Start Time	$500 \mathrm{msec} @ 15 \mathrm{ips}$ $500 \mathrm{msec} @ 71 / 2 \mathrm{ips}$		To 0.1% DIN 45507 flutter with $101 / 2$ inch reels
Rewind Time	110 sec for 2500 ft . 170 sec for 4800 ft .		
Wow and Flutter	$\begin{aligned} & 15 \mathrm{ips}<0.030 \% \\ & 71 / 2 \mathrm{ips}<0.045 \% \end{aligned}$	DIN 45507 weighted DIN 45507 weighted	
Frequency Range			
Record/Reproduce (Using Ampex 456 tape)	15 ips , IEC $71 / 2 \mathrm{ips}$, IEC	30 Hz to 30 Hz to	$\begin{array}{ll} 0 \mathrm{kHz} & +0.75,-2 \mathrm{~dB} \\ 8 \mathrm{kHz} & +0.75,-1.5 \mathrm{~dB} \end{array}$
Signal to Noise*		mono	stereo
Record/Reproduce referenced to $510 \mathrm{nWb} / \mathrm{m}$	$\begin{aligned} & 15 \mathrm{ips}, \text { IEC } \\ & 71 / 2 \mathrm{ips}, \text { IEC } \end{aligned}$	$\begin{aligned} & 65 \\ & 63 \end{aligned}$	$\begin{aligned} & 64 \\ & 62 \end{aligned}$
Weighted dB(A)	15 ips , IEC $71 / 2 \mathrm{ips}$, IEC	$\begin{aligned} & 72^{*} \\ & 68 \end{aligned}$	$\begin{aligned} & 69 \\ & 66 \end{aligned}$
Weighted CCIR 468	15 ips, IEC 7112 ips , IEC	$\begin{aligned} & 62 \\ & 58 \end{aligned}$	$\begin{aligned} & 60 \\ & 56 \end{aligned}$

TABLE 1-3 SPECIFICATIONS
 (continued)

Harmonic Distortion*

1 kHz fundamental
at $510 \mathrm{nWb} / \mathrm{m}$
3rd harmonic

15 ips, IEC	$<0.52 \%$
$71 / 2 \mathrm{ips}$, IEC	$<1.6 \%$
15 ips, IEC	$<0.10 \%$
$71 / 2 \mathrm{ips}$, IEC	$<0.10 \%$

3rd harmonic 3% fluxivity leve

15 ips , IEC $\quad 1020 \mathrm{nWb} / \mathrm{m}$ $71 / 2 \mathrm{lps}$, IEC $\quad 1000 \mathrm{nWb} / \mathrm{m}$

Depth of Erasure

referenced to $250 \mathrm{nWb} / \mathrm{m}$
better than 80 dB at 1 kHz
Bias and Erase Frequency
120 kHz

* Typical values given. Specifications are largely dependent on tape formulation. Also, the performance of any particular type of tape varies from batch to batch.

1.2.6 JH-110M

The JH-110M is a three speed disc mastering deck intended for use with full and half revolution delay disc mastering systems. In addition to the standard $\mathrm{JH}-110 \mathrm{~B}$ features, the mastering deck includes a tape delay, a fast motion limit control, and an enhanced RTZ IIIM autolocator. Several tape roller guides provide time delays between the two playback heads. The tape path around these roller guides can insert a half or full revolution delay for $33-1 / 3$ or 45 rpm discs at any of the three
tape speeds.
The fast motion limit potentiometer limits the maximum tape speed in the fast forward and rewind modes for gentler spooling. The RTZ IIIM, along with the standard locating functions, stores positions for groove expansion, banding, and end of disc lead-out functions.

The $\mathrm{JH}-110 \mathrm{M}$ is available in $1 / 4$ inch stereo and mono versions. Specifications for the $\mathrm{JH}-110 \mathrm{M}$ are listed in Tables 1-4.

Figure 1-5 JH-110M Transport

TABLE 1-4 SPECIFICATIONS JH-110M

Reel Size	3 to 14 inch NAB or EIA
Tape Width	$1 / 4$ inch full width $1 / 4$ inch 2 track NAB 2 track DIN $1 / 2$ inch 2 track

$71 / 2,15, \& 30 \mathrm{ips}$
($19,38 \& 76 \mathrm{~cm} / \mathrm{s}$)
5 to 45 ips
(13 to $114 \mathrm{~cm} / \mathrm{s}$)
better than 0.02\%
$51 / 2 \pm 1 / 4$ oz .

900 msec @ 30 ips $500 \mathrm{msec} @ 15 \mathrm{ips}$ 500 msec @ $71 / 2 \mathrm{ips}$
variable 110 sec to $11 \frac{1}{2} \mathrm{~min}$. for 2500 ft .
$30 \mathrm{ips}<0.020 \%$
$15 \mathrm{ips}<0.030 \%$
$71 / 2 \mathrm{ips}<0.045 \%$
DIN 45507 weighted
DIN 45507 weighted
DIN 45507 weighted
At all tape speeds beginning to end of reel

To 0.1\% DIN 45507 flutter with $101 / 2$ inch reels

Frequency Range
(Using Ampex 456 tape)

Signal to Noise*
referenced to $510 \mathrm{nWb} / \mathrm{m}$

Weighted $\mathrm{dB}(\mathrm{A})$
$30 \mathrm{ips}, \mathrm{AES}$
15 ips, NAB $71 / 2 \mathrm{ips}, \mathrm{NAB}$

30 ips, AES
15 ips, NAB
$71 / 2 \mathrm{ips}, \mathrm{NAB}$
30 ips, AES
15 ips, NAB
$71 / 2 \mathrm{ips}$, NAB

40 Hz to $28 \mathrm{kHz}+0.75,-2 \mathrm{~dB}$
30 Hz to $24 \mathrm{kHz}+0.75,-2 \mathrm{~dB}$
30 Hz to $20 \mathrm{kHz}+0.75,-1.5 \mathrm{~dB}$
mono 2 track
74
71
$73 \quad 70$
$71 \quad 68$
$87 \quad 84$
$81 \quad 78$
$81 \quad 78$

TABLE 1.4 SPECIFICATIONS (continued)

Harmonic Distortion*

1 kHz fundamental
at $510 \mathrm{nWb} / \mathrm{m}$

3rd harmonic	30 ips , AES 15 ips, NAB $71 / 2 \mathrm{ips}, \mathrm{NAB}$		$\begin{aligned} & <0.35 \% \\ & <0.52 \% \\ & <1.6 \% \end{aligned}$	
2nd harmonic	30 ips, 15 ips , $71 / 2$ ips,	AES NAB NAB	$\begin{aligned} & <0.10 \% \\ & <0.10 \% \\ & <0.10 \% \end{aligned}$	
3rd harmonic 3% fluxivity level	30 ips, 15 ips , $71 / 2 \mathrm{ips}$,	AES NAB NAB	1040nWb/m $1020 \mathrm{nWb} / \mathrm{m}$ $1000 \mathrm{nWb} / \mathrm{m}$	
Delays Max delay time	30 ips 15 ips $71 / 2 \mathrm{ips}$ 33/4 ips	$\begin{array}{r} 1.8 \mathrm{sec} . \\ 3.6 \mathrm{sec} . \\ 7.2 \mathrm{sec} . \\ 14.4 \mathrm{sec} . \end{array}$		54 inch (137 cm) delay Loop
Min delay time	30 ips 15 ips $71 / 2 \mathrm{ips}$ $33 / 4 \mathrm{ips}$	$\begin{aligned} & 0.21 \mathrm{sec} . \\ & 0.46 \mathrm{sec} . \\ & 0.84 \mathrm{sec} . \\ & 1.68 \mathrm{sec} . \end{aligned}$		6.3 inch (16 cm) delay loop Delay may be set for several values between min and max.
		$\begin{aligned} & 33^{1 / 3} \text { RPM } \\ & (1.8 \mathrm{sec}) \end{aligned}$		$\begin{aligned} & 45 \mathrm{RPM} \\ & (1.33 \mathrm{sec}) \end{aligned}$
1 Revolution Delay (Capps	30 ips	$\begin{aligned} & 54 \pm .2 \mathrm{in} . \\ & 137 \pm .5 \mathrm{~cm} \end{aligned}$		$\begin{aligned} & 40 \pm .2 \mathrm{in} . \\ & 101.6 \pm .5 \mathrm{~cm} \end{aligned}$
or Scully)	15 ips	$\begin{aligned} & 27 \pm .2 \mathrm{in} . \\ & 68.6 \pm .5 \mathrm{~cm} \end{aligned}$		$\begin{aligned} & 20 \pm .2 \mathrm{in} \\ & 50.8 \pm .5 \mathrm{~cm} \end{aligned}$
	$71 / 2 \mathrm{ips}$	$\begin{gathered} 13.5 \pm .2 \mathrm{in} . \\ 34.3 \pm .5 \mathrm{~cm} \end{gathered}$		$\begin{aligned} & 10 \pm .2 \mathrm{in} . \\ & 25.4 \pm .5 \mathrm{~cm} \end{aligned}$
		$33^{1 / 3}$ RPM (0.9 sec)		$\begin{aligned} & 45 \mathrm{RPM} \\ & (0.66 \mathrm{sec}) \end{aligned}$
1/2 Revolution Delay (Neumann)	30 ips	$\begin{aligned} & 27 \pm .2 \mathrm{in} . \\ & 68.5 \pm .5 \mathrm{~cm} \end{aligned}$		$\begin{aligned} & 20 \pm .2 \mathrm{in} . \\ & 50.8 \pm .5 \mathrm{~cm} \end{aligned}$
	15 ips	$\begin{aligned} & 13.5 \pm .2 \mathrm{in} . \\ & 34.3 \pm .5 \mathrm{~cm} \end{aligned}$		$\begin{aligned} & 10 \pm .2 \mathrm{in} . \\ & 25.4 \pm .5 \mathrm{~cm} \end{aligned}$
	$71 / 2 \mathrm{ips}$	$\begin{gathered} 6.7 \pm .2 \mathrm{in} . \\ 17.1 \pm .5 \mathrm{~cm} \end{gathered}$		$\begin{aligned} & 5 \pm .2 \mathrm{in} . \\ & 12.7 \pm .5 \mathrm{~cm} \end{aligned}$

[^0]

Figure 1-6 Audio Panel

1.3 Audio Electronics

1.3.1 Standard Audio Electronics (JH-110B,-14,-8)

The standard JH-110B audio electronics are housed inside a $3-1 / 2$ by $17-3 / 4$ by $12-1 / 8$ inch drawer ($8.9 \times 45.1 \times 30.8 \mathrm{~cm}$). Each drawer holds two channels of audio electronics. Single track options contain one channel mounted in the left side and a blank panel covering the right side of the drawer. Variable profile cabinets hold one or two drawers; high profile cabinets hold two or four. These drawers extend from the cabinets on latching slide rails for access to the audio printed circuit boards and components. Audio input, output, and power connectors are located at the rear of the drawers. The drawers can be extended on their slide rails without disconnecting any cables.

Each channel consists of a front panel, which sup-
ports the meter and switches, and a Mother Board, which forms the bottom of the assembly. The I/O, Record, Reproduce, and Bias circuit boards are plug in modules which mount directly onto the Mother Board. The channel electronics can be easily removed from the drawer by removing two screws in the front panel and four screws in the Mother Board. All connections to the Mother Board are made via plug in connectors. Since all the channel electronics are identical, modules can be swapped from channel to channel for troubleshooting or maintenance purposes.

Switches on the Repro and Record Modules select either NAB or IEC standard equalization. When properly aligned to specifications the equalization standards can be switched without any realignment necessary.

Specifications for the standard audio electronics are listed in Table 1-5.

1.3.2 Broadcast Audio Electronics (JH-110BC)

The broadcast audio electronics mount in two drawers similar to the standard audio electronics. The bottom drawer contains two channels of audio electronics, similar to the standard audio electronics. The top drawer contains the monitor amplifier and speaker plus the controls and meters.

Two track stereo or mono playback/record modes are switch selectable. The monaural mode tecords the left line input onto both right and left tracks. In repro both traçs are summed together and applied to the left line output.

The Mother Board, I/O, and Bias Modules of the broadcast deck are similar to the standard audio modules. The Repro and Record Modules however, are unique to this transport. These

TABLE $1-5$STANDARD AUDIO SPECIFICATIONS	
Line Input	
Level	$\begin{aligned} & -15 \mathrm{dBm} \text { to }+24 \mathrm{dBm} \\ & \text { for } 0 \mathrm{VU} \end{aligned}$
Input	
Impedance	$10 \mathrm{k} \Omega$ balanced
Headroom	30 dBm at clipping
Line Output	
Level	+4 dBm at 0 VU
Source	
Impedance	120Ω balanced
Maximum Outpu	+24 dBm at clipping
Equalization	
High Speed	Low Speed Option
30 ips AES	15 ips NAB/IEC
15 ips NAB/IEC	7112 ips NAB/IEC
$7112 \mathrm{ips} \mathrm{NAB} / \mathrm{IEC}$	$33 / 4 \mathrm{ips}$ NAB

modules playback and record at preset levels only, there are no repro or record level controls on the broadcast front panel. Also, since this is a two speed transport, the Repro and Record Modules contain only high and low speed equalization networks.

Specifications for the broadcast audio electronics are listed in Table 1-6.

1.3.3 Broadcast Audio Electronics (JH-110BX)

The JH-110BX audio electronics is similar to the standard audio electronics. It consists of either one or two channels mounted in a single drawer. Equalization is provided for two speeds, it is not instant standard switchable like the standard version. These electronics do not contain any cue mode repro circuitry. In addition to the audio electronics drawer, the JH-110BX can be ordered with an optional monitor amplifier drawer. This option provides a built in speaker and a headphone jack for monitoring the deck's output. A volume (level)

Figure 1-7 Broadcast Audio Panel

control and right/left/both switches are mounted on the monitor's front panel.

1.3.4 Mastering Audio Electronics (JH-110M)

The mastering deck audio electronics are mounted in extendible drawers similar to the standard audio electronics. Two identical channels fit into each drawer. The top drawer contains the repro circuitry for the preview head, the bottom drawer contains the repro circuitry for the repro head. High frequency and low frequency equalization controls for each of the three speeds are provided on the front panel. Alternatively, a
switch on the front panel can select preset equalization (NAB or IEC).

The Mother Board and Repro Modules of the mastering deck audio channels are similar to those of the standard audio channels. Modules unique to these audio electronics are the Front Panel Equalization Board and an output only version of the I/O Amplifier Module. Since this is a reproduce only machine, there are no Bias or Record Modules.

Specification for the mastering deck audio electronics are listed in Table 1-7.

Figure 1.8 Mastering Audio Panel

TABLE 1.7
MASTERING AUDIO SPECIFICATIONS
Line Output
Level $\quad+4 \mathrm{dBm}$ at 0 VU
Source
Impedance $\quad 120 \Omega$ Balanced
Maximum Output +24 dBm at clipping

Equalization

30 ips AES with front panel variable control
15 ips NAB/IEC with front panel variable control
$71 / 2 \mathrm{ips}$ NAB/IEC with front panel variable control

1.4 RTZ III and Autolocator III

The RTZ III autolocator is standard on all JH -110Bs. The JH-110M transports are equipped with the RTZ IIIM autolocator which has additional disc mastering control functions. The JH-110C eight track deck uses the AutoLocator III, mounted in a remote control unit. All three locators are microprocessor controlled and have the same accuracy and range specifications. These specifications are listed in Table 1-8.

1.4.1 RTZ III

A microprocessor in the RTZ III executes firmware-stored subroutines to perform three basic functions: tape position display, tape velocity display, and reel motor control allowing relocation to any position on the tape.

Tape position is derived from pulses generated by an optical transducer mounted under the left tape roller guide. The microprocessor displays tape position in minutes and seconds of record/playback time. Calculations are normalized to the tape speed so that the display always indicates actual record/playback time for any standard speed selected. Negative time, that is, positions
on the tape to the left of the zero position, is indicated by a flashing decimal point between the minutes and seconds columns.

Tape velocity is derived from pulses generated by the capstan tachometer. The microprocessor times the arrival of the capstan pulses, calculates the velocity, and displays the velocity in inches and hundredths of inches per second.

The RTZ III can position the tape to zero or to a pre-defined position stored in memory. There are four memory locations for storing tape positions, positive positions only. The autolocator returns the tape to zero or to a stored position in either a forward or reverse direction, from either a positive or negative tape position. Tape positions can be stored in the memory locations at any time using switches on the display panel.

Figure 1-9 RTZ III Panel

Figure 1-10 RTZ IIIM Panel

1.4.2 RTZ IIIM

The RTZ IIIM, found in the JH-110M transports, performs all the RTZ III functions plus three disc lathe control functions. Twenty additional memory locations are available for storing groove expansion positions, band positions, and the end of record lead out position. During playback the RTZ IIIM signals the disc lathe to perform the desired expand, band, or lead out function when the tape reaches the position stored in memory. The display will read out all the function positions stored in memory and indicate the number of unused locations available.

TABLE 1.8 RTZ III and A/L III SPECIFICATIONS'	
Position Memories	
RT III	4 locate memories
RTZ IIIM	4 locate memories plus 20 lathe function memories
A/L III	10 locate memories
Position Range	$-99 \min 59 \mathrm{sec}$ to +99 min 59 sec
Locator Accuracy	$\pm 1 \mathrm{sec}$ accumulative over 20 locates
Velocity Range	0 to 50 ips
Velocity Display Accuracy	$\pm 0.01 \mathrm{ips}$

1.4.3. AutoLocator III

The AutoLocator III performs the same basic functions as the RTZ III and has several additional features. It contains ten position locate memories and uses two LED position displays. One display shows the tape position, the other shows the desired locate position. Tape positions are loaded into the display and the memory with a calculator type keyboard.

The AutoLocator III also allows remote variable speed control of the transport. In the variable speed mode, the tape velocity function displays both the tape speed and the number of semitones of pitch change.

1.5 Power Supply

The JH-110PS power supply converts single phase ac line voltage to the ac and regulated dc voltages required by the tape transport and the audio electronics. The power supply mounts at the bottom of cabinet and is secured by four allen head screws.

Located on the front panel are the ON/OFF power switch and an access door to the voltage regulators. On the rear panel are the power connectors and the fuse holder. The fuse holder plug sets the transformer for use with a 100,115 , or 220 volt ac line input at either 50 or 60 Hz .

Input power specifications for the JH-110PS are listed in Table 1-9.

	TABLE 1-9 INPUT POWER SPECIFICATIONS				
$\begin{aligned} & \text { INPUT VOLTAGE } \\ & (50.60 \mathrm{~Hz}) \end{aligned}$	TOLERANCE	CURRENT DRAW	POWER DISSIPATION	HEAT DISSIPATION	FUSE TYPE
100v	$\pm 10 \%$	2.2A	220W	750BTU/hr	115 v 4 A S/B
115 v	$\pm 10 \%$	2.0 A	220W	750BTU/hr	115 v 4 A S/B
220 v	$\pm 10 \%$	1.0A	220W	750BTU/hr	220 v 2 A S/B

TABLE 1-10 ORDERING NUMBERS

MODEL NUMBER DESCRIPTION
 RECORDING SYSTEMS (includes RTZ III)

JH-110B-1-UM Monaural recorder $1 / 4$ inch
JH-110B-1/2-UM Monaural recorder $1 / 4$ inch with additional two track playback head and electronics
JH-110B-2-UM Two-track recorder $1 / 4$ inch
JH-110B-2/1-PB-UM Two-track recorder $1 / 4$ inch with additional monaural playback head and electronics
JH-110B-2/2-PB-ÜM . Two-track recorder $1 / 4$ inch with additional $1 / 4$ track stereo playback head and electronics
JH-110B-4-UM Four-track recorder $1 / 2$ inch
JH-110B-14-1-UM Monaural recorder $1 / 4$ inch, 14 inch reels
JH-110B-14-1/2-PB-UM Monaural recorder $1 / 4$ inch with additional two-track playback head and electronics, 14 inch reels
JH-110B-14-2-UM Two-track recorder $1 / 4$ inch, 14 inch reels
JH-110B-14-2/1-PB-UM Two-track recorder $1 / 4$ inch with additional monaural playback head and electronics, 14 inch reels
JH-110B-14-2/2-PB-UM Two-track recorder $1 / 4$ inch with additional $1 / 4$ track stereo playback head and electronics, 14 inch reels
JH-110B-14-4-UM Four-track recorder $1 / 2$ inch, 14 inch reels JH-110C-8 Eight-track , 1 inch, $101 / 2$ inch reels

PLAYBACK ONLY SYSTEMS

JH-110B-1-PB-UM Monaural reproducer $1 / 4$ inch
JH-110B-2-PB-U̇M Two-track reproducer $1 / 4$ inch
JH-110B-4-PB-UM
JH-110B-14-1-PB-UM
JH-110B-14-2-PB-UM
JH-110B-14-4-PB-UM

$$
\text { Four-track reproducer } 1 / 2 \text { inch }
$$

Monaural reproducer $1 / 4$ inch, 14 inch reels
Two-track reproducer $1 / 4$ inch, 14 inch reels
Four-track reproducer $1 / 2$ inch, 14 inch reels

BROADCAST SYSTEMS

JH-110BC-UM
JH-110BX-1-UM
JH-110BX-2-UM
DIN stereo recorder $1 / 4$ inch, 30 cm reels
Monaural recorder $1 / 4$ inch, $101 / 2$ inch reels
Two-track recorder $1 / 4$ inch, $101 / 2$ inch reels
TAPE TO DISK TRANSFER SYSTEMS (reproduce only)

JH-110M-1-C-UM
JH-110M-1-N-UM
JH-110M-1-S-UM
JH-110M-2-C-UM
JH-110M-2-N-UM
JH-110M-2-S-UM

CABINETS

VP
VP-M
HP-4
HP-8

Monaural system for Capps lathe Monaural system for Neumann lathe Monaural system for Scully lathe Stereo system for Capps lathe Stereo system for Neumann lathe Stereo system for Scully lathe

Variable profile cabinet
Variable profile cabinet for JH-110M
Overhead bridge cabinet, two tier
Overhead bridge cabinet, four tier

1.6 Options

Table 1-10 lists the ordering numbers for the various JH-110B models and options. Model number suffix codes attached to the ordering numbers are defined as follows:

$$
\begin{aligned}
& -1-1 / 4 \text { inch full track } \\
& -2-1 / 4 \text { inch two track } \\
& -4-1 / 2 \text { inch four track } \\
& - \text { UM }- \text { unmounted } \\
& -V P-\text { with variable profile cabinet } \\
& -H P-\text { with high profile cabinet } \\
& -P B=\text { playback only electronics }
\end{aligned}
$$

The following options are available for the JH110B. Some options are not available on some models. Check price lists for restrictions.

$$
\begin{aligned}
& \text { Option } 1 \text { - low speed transport } \\
& \text { Option } 2 \text { - DIN format stereo heads } \\
& \text { Option } 3 \text { - tape scissors and marker } \\
& \text { Option } 4 \text { - RTZ III autolocator } \\
& \text { Option } 5 \text { - technical manual } \\
& \text { Option } 6-1 \text { - transformer line outputs } \\
& \text { Option } 6-2 \text { - transformer line inputs and out- } \\
& \text { puts } \\
& \text { Option } 7-1 \text { - } 1 / 2 \text {-inch format stereo heads } \\
& \text { Option } 7-\mathrm{M}-1 / 2 \text {-inch format stereo heads for } \\
& \text { the JH-110M }
\end{aligned}
$$

1.7 Accessories

Monitor Panel JH-110B-MON

The Monitor Panel allows you to monitor the tape machine's output through a built in speaker or a mono headphone jack. This panel contains a volume control and left/right/both channel select switches. The panel and its amplifier occupies the space of a standard electronics drawer. It may be installed in any JH-110 transport containing an empty electronics drawer.

A schematic of the monitor's amplifier, PCA2700-0059, is included in Section 5.

Remote Control JH-110B-R/C

The remote control unit provides full transport motion control. Controls included are: fast forward, rewind, stop, play, record, edit, tape lifter defeat, return to zero, RTZ display reset, and an MVC joystick. The lifter defeat, not found on the
transport, prevents the tape lifters from pushing the tape away from the heads during the fast wind modes.

The remote control plugs directly into the transport via a 35 foot long cable.

This accessory is not compatible with the JH-110C-8.

Cover Plate JH-110B-HA/CP

This cover plate mounts on the top of the head bridge assembly and prevents access to the head adjustment screws.

Accessory Stand JH-20

The JH-20 holds one remote control unit, one AutoLocator III, or one JH-45 AutoLock.

Mounting Bracket JH-20-3

The JH-20-3, when connected to the JH-20 Accessory Stand, holds up to three JH-110B-R/C remote control units.

Accessory Stand JH-21

This larger stand holds, side by side, two AutoLocators, two AutoLocks, or one of each.

Phase Meter JH-22

The JH-22 Phase Meter comes housed in its own chassis that includes its own power supply. The meter reads from -180 to +180 degrees.

Remote Readout JH-47

The JH-47 is a remote display for the RTZ III. This accessory includes a four digit LED display, a bezel cover for the display, and a 35 foot cable. You must supply your own mounting surface or enclosure for the display.

Schematics for the JH-47 are included in Section 4.

Tape Path Alignment Kit AS6B79

This kit contains precision machined blocks for aligning the heads and the tape guides. It is not intended for use with $1 / 4$ inch tape transports.

Annunciator Board 25B177

This board is a troubleshooting aid for the transport. LEDs on this board indicate the output states of several key control signals from the Control Logic Board. A description of this board and its use is given in Section 8.

DIN Hub Adaptors JH-110-D/H

Accessory JH-110-D/H is a set of two DIN hub adaptors and tape platters for 1000 m tape pancakes.

Figure 2-1 Transport Control Panel

SECTION 2 OPERATING PROCEDURES

This section lists all the control switches and indicators of the tape transport and the audio electronics. Several examples of the use of these controls follow these lists. These examples can be used to familiarize yourself with the operation of the tape recorder or as a post installation checkout procedure to insure proper operation. For detailed maintenance and alignment procedures, consult Section 7 of the Technical Manual.

2.1 CONTROLS \& INDICATORS

Control/Indicator

Transport

RWD

Rewinds tape onto supply reel at fast speed. Cancels previously selected motion command (i.e. FWD, PLAY, or RECORD).

FWD

Winds tape onto take-up reel at fast speed. Cancels previously selected motion command.

STOP

Cancels previously selected motion command and stops tape.

PLAY

Initiates playback at the selected speed and cancels previous motion command (RWD,FWD,STOP,or RECORD). Playback source is selected at the audio panel.

RECORD

When pressed with PLAY button, or when in play mode, enables recording at selected
speed. To record, RECORD READY must also be selected at the audio panel.

EDIT
When pressed with tape out of the tape load sensor, unspools tape from supply reel without winding it onto the take-up reel. Tape spills off right side of deck for editing and stops when STOP is pressed.

When pressed with tape in the tape load sensor, disables the tape tension system. Tape then moves freely by hand with no resistance from the reel motors. If the tape has remained in the tape load sensor during this mode, tension is restored by pressing EDIT a second time. If the tape is removed from the tape load sensor during this mode, tension is restored by replacing the tape in the tape load sensor.

FAST MOTION LIMIT (110M Only)
Adjusts the maximum limit of the fast forward and rewind speeds, as well as maximum RTZ speed.

Figure 2-2
JH-110M Fast Motion Limit Control

MVC.
From stop mode, manually controls tape speed and direction while hand is in contact with joystick. When released, returns transport to STOP.

From rewind or fast forward modes, manually controls tape speed and direction if touched and will continue to control tape motion when released. Control cancelled when any other mode is entered.

TORQUE LIMIT SWITCH

Ten inch models - single switch. When out, selects normal torque for $10-1 / 2$ inch reels. When pressed in, limits reel motor torque for use with smaller or plastic reels.

Fourteen inch models - three switches:
HI - When pressed in, selects higher torque for use with 14 inch reels.

MED - When pressed in, selects standard torque for use with 10-1/2 inch reels.

LO - When pressed in, limits torque for use with smaller or plastic reels.

Figure 2-3

JH-110B-14 Torque Limit Switches

SHIELD LEVER

Raises and lowers repro head/shield.

TAPE LIFTER LEVER

Momentarily places tape against heads during fast forward and rewind modes.

SPEED SELECT

Three position switch:
HI - Selects high play and record speed (high speed models 30 ips , low speed models 15 ips)

MED - Selects medium play and record speed (high speed models 15 tps , low speed models 7-1/2 ips)

LO - Selects low play and record speed (high speed models $7-1 / 2 \mathrm{ips}$, low speed models $3-3 / 4$ ips)

Figure 2-4 Reference And Speed Controls

REFERENCE SELECT

Four position switch:
EXT - Selects an external capstan speed reference for slaving this transport to another device.

FIX - Selects an internal crystal oscillator as a fixed reference for the capstan speed.

VAR - Selects a variable reference for the capstan speed.

SLAVE - Selects interface for use with MCl's AutoLock SMPTE synchronizer.

VARIABLE REFERENCE ADJUST

Varies the capstan speed by $\pm 20 \%$ of the selected speed when VAR is selected by the reference switch.

RTZ III

RTZ III DISPLAY

Displays tape position in minutes and seconds of elapsed play/record time. Also used as display for RTZ function switches listed below.

Figure 2-5 RTZ III Controls

TVI

Displays tape velocity in inches and hundredths of inches per second.

RTZ

Autolocates tape to the position where zero was set.

CLR

Clears display and defines present tape position as zero.

STO
Stores displayed tape position in the memory selected by switch 1, 2, 3, 4, BND, XPD, or L-OUT.

SET
Allows switches 1, 2, 3, and 4 to enter a tape position into the display.

1, 2, $3 \& 4$
Autolocates tape to the position stored in memory $1,2,3$, or 4 .

Figure 2-6 RTZ IIIM Controls

If SET is held down, pressing $1,2,3$, or 4 in crements the display digit located directly above the button.
If STO were pressed, pressing $1,2,3$, or 4 stores the displayed position in memory 1, 2, 3 or 4 respectively.

BND (110M Only)
Displays positions of BAND functions stored in memory.
If STO were pressed, pressing BND stores the displayed position as a BAND position.

XPD (110M Only)

Displays the starting followed by the ending positions of the expand functions stored in memory.
If STO were pressed, pressing XPD stores the displayed position as an expand starting posi-
tion; releasing XPD stores the displayed position as an expand ending position.

L.OUT (110M Only)

Displays the position of the lead out function stored in memory.
If STO were pressed, L-OUT stores the displayed position as the lead out position.

CLR (110M Only)

When pressed simultaneously with SET, clears the display to zero.
If BND, XPD, or L-OUT were pressed, clears last displayed entry from memory.

Audio

REP Level

Controls level of the line output signal while REPRO is selected.

REP CAL

When in CAL position, disables the function of the REPRO level.control and selects a preset calibrated level for output.

INPUT

Selects the line input as the source of the line output.

REPRO

Selects the reproduce head as the source of the line output.

CUE

Selects the record head as the source of the line output during playback. Selects line input
during recording.

REC Level

Controls the signal level to the record head for recording.

REC CAL

When in CAL position, disables function of REC level control and selects a preset calibrated record level.

SAFE

Disables track erasing and recording when transport is switched to record mode.

READY
Enables track erasing and recording.
BIAS
Displays relative level of bias current on VU meter.

IEC (Green)
When off, indicates that NAB equalization is selected on the Record and/or Repro Modules.

When on, indicates that IEC equalization is selected on the Record and/or Repro Modules.

READY (Amber)

When on, indicates that track is in record ready
mode.

RECORD (Red)

When on, indicates that track and transport are in record mode.

JH-110BC Only

Monitor

Level

Adjusts volume of monitor speaker and headphone outputs.

Left

Selects left channel as monitor output to speaker.

Both

Selects combination of left and right channels as monitor output to speaker.

Right

Selects right channel as monitor output to speaker.

Mode

IN - Selects mono recording and playback.
OUT - Selects stereo recording and playback.
Meters
IN - Selects line input signal for meter display.

Figure 2.7 Audio Controls and Indicators

Figure 2.8 Broadcast Audio Controls and Indicators

OUT - Selects repro head output for meter display.

Phone

Jack for low impedance headphones, disables monitor speaker output.

JH-110M Only

HI SPEED

$<$ Adjusts high end equalization for high speed (30 ips).
> Adjusts low end equalization for high speed (30 ips).

MED SPEED

< Adjusts high end equalization for medium speed (15 ips).
> Adjusts low end equalization for medium speed (15 ips).

LO SPEED

$<$ Adjusts high end equalization for low speed (7-1/2 ips).
> Adjusts low end equalization for low speed (7-1/2 ips).

JH-110C-8 Only
 Individual Channel Status

NOTE: For remote status operation, the Remote Enable switch on each channel Audio Mother Board must be pressed in.

RECORD READY (Black Button)

Enables recording on that particular track.

CUE (Gray Button)

Selects the record head for playback.

READY INDICATOR (Yellow LED) Indicates that channel is in record ready mode.

RECORD INDICATOR (Red LED) Indicates that channel is recording.

Figure 2-9 Mastering Audio Controls and Indicators

CUE INDICATOR (Green LED)

Indicates that channel playback signal is coming from the record head (cue or sync mode).

Master Status

TAPE
Selects the repro or record head as source for line output and VU meters.

INPUT

Selects the line input signal as the source for the line output and VU meters.

AUTO

Selects automatic overdub operation. Monitor source for all channels in record ready status switch as follows:

Stop mode - input
Play mode - cue
Record mode - input
Monitor source for all other channels is cue (record head).

TAPE

INPUT

INPUT/AUTO

Monitor source for all channels in record ready status is the input.

Monitor source for all other channels is cue (record head).

AutoLocator III

TAPE POSITION DISPLAY

Displays the present tape position in minutes and seconds or tape velocity in inches per second.

LOCATE POSITION DISPLAY

Displays the autolocate position in minutes and seconds or pitch change in $1 / 4$ semitones from standard speed.

NUMERIC KEYBOARD (0 through 9)

Each switch enters its corresponding digit into the Locate Position display and memory.

Shifts Locate Position to Tape Position.

Shifts Tape Position to Locate Position.

```
sto
```

STO
Stores the Locate Position into memory selected by numeric key.

RCL

RCL
Recalls position stored in memory selected by numeric key and displays it in the Locate Position display.

8/9/REP

Repeatedly returns tape to locate position 8 and plays to locate position 9 . Cancelled by any function key.

RST

RST
Clears position display and memory to zero.

LOC
LOC
Starts autolocation to position in Locate Position display.

Tape Speed Control

TVI

TVI
Displays tape velocity in inches per second in the Tape Position display and pitch change in $1 / 4$ semitone increments in the Locate Position display.

MODE

MODE
Selects either fixed or variable capstan speed reference when transport reference switch is in EXT position.

TAPE SPEED
Varies the capstan speed when variable speed reference is selected by MODE switch.

VAR INDICATOR (Red LED)

Indicates variable capstan speed reference.
FIX INDICATOR (Green LED)
Indicates fixed crystal capstan speed reference.

2.2 Operating Procedures

2.2.1 Transport Motion Controls

Turn the Power Switch ON. (Located inside the well at the bottom of the cabinet.)

Meter lights come ON. All transport function lights are OFF.

Insert an opaque card into the Tape Sensor Slot. The yellow light comes ON under the STOP button. The takeup reel starts turning counterclockwise. The supply reel starts turning clockwise. The speed of rotation for both reels is approximately 20 rpm - or about 1 turn in 3 seconds. The speed need not be identical for the two reels.

Remove the card. Load a roll of tape.
STOP light is ON. Reels wind up loose tape and establish idle tension.

Press the FWD button.
STOP light goes OFF. FWD light comes ON. Tape lifters lift tape away from the heads. The tape accelerates to a fast movement in the FWD direction.

Figure 2-10 Transport Motion Controls

Press the RWD button.

FWD light goes OFF. RWD light comes ON. Tape slows smoothly and reverses direction,then accelerates in a rewind direction.

Press the STOP button.

RWD light goes OFF. STOP light comes ON. Tape lifters go to their recessed position.

Slowly move the MVC (Manual Velocity Control) Joystick to the right.

LED located in the joystick comes ON. Tape moves forward. (Speed of movement is directly related to the angle of the joystick.)

NOTE:

The Joystick may not work if good hand contact is not made to the surface of the tape transport. Contact may be made with either hand.

Slowly move the MVC Joystick to the left.
Tape comes to a stop and then moves in the reverse direction. Speed of the movement is directly related to the angle of the Joystick.

Release the MVC Joystick. MVC LED turns OFF. Tape stops.

Touch (do NOT move) the MVC Joy stick. Tape starts in the same direction and at the same speed which was set when the Joystick was last used.

Set the MVC Joystick to some intermediate for-
ward speed - then release it. MVC LED turns OFF. Tape stops.

Press the FWD button.
STOP light goes OFF. FWD light comes ON. Tape lifters come forward. Tape accelerates to full speed forward.

Touch (do NOT move) the MVC Joystick. MVC LED comes ON. Tape slows to the intermediate speed already established by the position of the MVC Joystick.

Release the MVC Joystick.

Nothing changes. Tape continues to move. MVC LED stays ON. This is known as Latching MVC Mode.

Press any (except EDIT or REC) transport control button.

Machine drops out of latched MVC mode and enters the mode selected. MVC LED goes OFF.

Press the STOP button.
STOP light comes ON. Tape stops.

Press the PLAY button.

STOP light goes OFF. PLAY light comes ON. Capstan pressure roller clamps tape to the capstan. Tape moves at selected play speed.

Press the RWD button.

PLAY light goes OFF. RWD light comes ON. Capstan pinch roller releases tape. Tape lifters lift tape away from heads. Tape accelerates in
the rewind direction.
Press the PLAY button.
RWD light goes OFF. Both STOP and PLAY lights come ON. Tape stops. STOP light goes OFF. Tape lifter goes to its recessed position. Capstan pinch roller clamps tape to the capstan. Tape smoothly accelerates to selected play speed.

CAUTION

The following step will result in erasure of any material which has been recorded on the tape.

Press the RECORD button. (On the broadcast transport press both PLAY and RECORD)

RECORD light comes ON. (PLAY light is still ON.$)$

NOTE:
Transport is in Record mode. However, on the JH-110B decks ONLY channels which have been put into Record-Ready will make a recording.

Press the RWD button.
RECORD light and PLAY light go OFF. RWD light comes ON. Capstan pinch roller releases tape. Tape stops. Tape lifters lift tape away from heads. Tape accelerates in rewind mode.

Allow tape to rewind completely.
As soon as the tape pulls away from the takeup reel, it comes out of the tape sensor slot. All transport lights go OFF. Mechanical brakes come ON. RTZ Display freezes at end of tape position.

Thread the tape across the heads, through the capstan assembly, but NOT through the tape sensor slot.

Allow the end of the tape to spill over the right side of the tape transport.

Press the EDIT button.

EDIT light comes ON. Capstan pinch roller pulls tape against the capstan. Tape spills over the right side of the tape transport. The takeup reel is not activated. (This reel may creep slowly.)

Press the STOP button.
EDIT light goes OFF. Capstan pinch roller releases tape. Tape stops moving.

Rethread the tape through the tape sensor slot and around the takeup reel.

EDIT light goes OFF. Reels turn at idle speed and take up any slack tape.

Press the EDIT button. EDIT light comes ON. Reel stops.

Pull tape out of the tape sensor and to the right. EDIT light stays ON. Reel motors give no resistance to tape movement, and turn easily in either direction.

Replace tape in tape sensor slot.

EDIT light goes OFF. Reels turn at idle speed and take up any slack in tape.

2.2.2. Reference and Speed Controls

Load a roll of tape.
Turn the REFERENCE switch to VAR.
Turn the SPEED switch to HI.
Press the LO TORQUE LIMIT switch (14 inch model).

Press the TORQUE LIMIT switch (10 inch model).

Put the transport into PLAY Mode.

Press and hold the TVI switch.
Slowly rotate the VAR potentiometer.
Note the speed variation between minimum and maximum position of the potentimeter. The speed range will be from -20% to $+20 \%$ of the high speed mode of your machine.

Turn the SPEED switch to MED.
The transport goes into STOP mode.
Put the transport into PLAY mode.
Press and hold the TVI switch.
Slowly rotate the VAR potentiometer.
The speed variation will be $\pm 20 \%$ of the MED speed of your machine.

Repeat the above procedure for LO speed.
The speed variation will be $\pm 20 \%$ of the LO speed of your machine.

Turn the REFERENCE switch to FIX.

The speed will be the lowest fixed speed provided for your machine. (7-1/2 ips for the standard machine, $3-3 / 4$ ips for the low speed option.)

Turn the VAR potentiometer.

There is no change of speed. Note that this potentiometer affects speed ONLY when the REFERENCE switch is in the VAR position.

Repeat the above procedure for MED and for HI speeds.

Speeds will be 15 ips and 30 ips for the standard machine. Speeds will be $7-1 / 2 \mathrm{ips}$ and 15 ips for the slow speed machine. Note that the machine automatically switches to STOP when the SPEED switch is turned.

Turn the SPEED control to HI.

Press the LO TORQUE LIMIT switch (14 inch model).

Press the TORQUE LIMIT switch (10 inch model).
Hold a finger against the back of the tape between the right roller guide and the takeup reel.

Press FWD then RWD. Continue to rock back and forth between the two modes.

Feel the amount of tape tension developed during acceleration of the tape in a new mode.

Press the HI TORQUE LIMIT switch (14 inch model).

Put the TORQUE LIMIT switch into its UP position

 (10 inch model).Feel the greater amount of tape tension developed during acceleration of the tape in a new mode. Also note that the speed change is quicker.

The 10 inch transport has a single torque limit switch. In UP position (for normal tape and 10 inch reels) the maximum torque is 49.5 inch ounces. In DOWN position (for plastic reels and alignment tapes only) the maximum torque is 22.5 inch ounces.

The 14 inch transport has three torque limit switches. The HI switch is for use with 14 inch reels ONLY and has a maximum torque of 72 inch ounces. The MED switch is for use with normal tape and 10 inch reels and has a maximum torque of 49.5 inch ounces. The LO switch is for use with plastic reels and alignment tapes and has a maximum torque of 22.5 inch ounces.

The EXT position of the REFERENCE switch is provided for synchronizing this machine with some other piece of equipment. The SERVO plug on the back of the transport chassis provides connections to this circuit. There are two methods of controlling the speed of the machine through this channel:

1. A signal of $\pm 5 \mathrm{vdc}$ will vary the frequency of the internal VCO. When switched to EXT, this signal voltage can control the speed of the machine.
2. A 19.2 kHz signal can be applied to the external reference. The frequency of the external signal then controls the speed of the machine.

The MCI AutoLock is a separate unit which synchronizes a slave machine to a master machine using the SMPTE, EBU, or NTSC (drop frame) digital time code. The slave machine reference switch is set to the SLAVE position. The master machine reference switch is turned to FIX. Synchronization is achieved by comparing synchronizing detect pulses of the slave to the master machine and altering the speed of the slave. The master machine speed is set by fixed 19.2 kHz (and by LO, MED, or HI speed switch) and controls the slave machine speed which receives speed information from the AutoLock.

2.2.3 RTZ III Locator Controls

When the transport locates to any desired position, the tape should quickly accelerate to the fast forward or rewind speed and smoothly decelerate to a stop or to play speed. Note that negative tape positions are indicated with a flashing point between the minutes and seconds. Negative positions cannot be stored in memory.

Load a roll of tape. Press CLR.
Display indicates zero minutes and seconds.

Enter tape positions into memories 1 and 2.
Example - Enter 15 minutes, 29 seconds into Memory 1.
Press and hold SET.
Press 1 once. Press 2 five times. Press 3 twice. Press 4 nine times.

Digit increments each time button is pressed. Display indicates 15:29.

Release SET.

Press STO, then Press 1. Position 15:29 is entered into memory 1.

Figure 2-11 RTZ III Display

Repeat above procedure to enter any position into

 memory 2.Display indicates desired position entered into memory 2.

Press CLR. Press 1. Display indicates 0:00. Transport locates to 15:29 and stops.

Press 2, then press PLAY. Transport locates to position entered in memory 2 and switches to play mode.

Press and hold TVI switch.
Display indicates tape velocity selected by SPEED switch.

Release TVI.
Press STO, then press 3.
Present tape position is entered into memory 3.

Press RTZ.
Transport locates to position where zero was set and stops.

Press 3.

Transport locates to position where STO and 3 were pressed while in play mode.

Repeat above step for memory 4.

Press FWD. Allow tape to run out from supply reel. Note position indicated on display, then clear display with CLR.

Display counts up until supply reel runs out.
Re-thread tape onto supply reel. Enter position noted above into display with SET and 1, 2, 3, 4 switches.

Press RTZ.
Transport rewinds to beginning of tape and stops before un-spooling from take-up reel.

2.2.4. Audio Controls

NOTE:
Each track has its own electronics panel (a 2 track machine has 2 electronic panels, a 4 track machine has 4 electronic panels, etc.) The controls for each track are identical.

For the following examples it will be necessary to provide a signal input (an audio generator is preferred), and an output monitoring system.

PREPARATION:

Load a roll of degaussed tape.
Put the two small toggle switches on the electronics panel(s) into CAL position (down).

Put the BIAS switch into its OUT position (not reading bias).

Press the INPUT switch.
Press the READY switch.
Put a 500 Hz signal into line input of the channel(s) under test.
If necessary adjust the REC level until the meter reads 0 VU .

Press the PLAY and RECORD buttons on the transport.
Record several minutes of 500 Hz tone.
Press the RTZ button on the transport. Change the input signal to 700 Hz .
If necessary, adjust the REC level until the meter reads 0 VU .

NOTE:

We now have 500 Hz recorded on the tape, and 700 Hz applied to the input. We can easily tell, by listening, whether we are playing back the previously recorded 500 Hz or the 700 Hz from the input.

Press STOP.
Press the SAFE switch(es) on the audio electronics panel(s).

Press the REPRO switch(es).
There is NO output on the VU meter or on the Line Output.

Press the INPUT switch(es).
The output shown on the VU meter and heard on Line Output is 700 Hz (the input signal).

Press the CUE switch(es).
There is NO output on the VU meter or on the Line Output.

Press the PLAY switch on the transport.

Press the REPRO switch.

The output shown on the VU meter and heard on the Line Output is 500 Hz . (The previously recorded signal).

Press the INPUT switch(es).
The output shown on the VU meter and heard on the Line Output is 700 Hz . (The input signal).

Press the CUE switch(es).

The output shown on the VU meter and heard on the Line Output is 500 Hz . (The record head is monitoring the previously recorded signal).

Press the READY switch(es) on the audio electronics panel(s).

The amber LED(s) turn ON.
Press the RECORD switch on the transport. The red LED(s) turn ON.

Press the REPRO switch(es).

The output shown on the VU meter and heard on the Line Output is 700 Hz . (The reproduce head is monitoring the signal immediately after it is recorded).

Press the INPUT switch(es).
The output shown on the VU meter and heard on the Line Output is 700 Hz . (The input signal

Figure 2-12 Audio Controls
as it is recorded).

Press the CUE switch(es).

The output shown on the VU meter and heard on the Line Output is 700 Hz .

CUE mode switches automatically in the following way:
In Play mode it monitors the record head.
In Record mode it monitors the Line input.
Change the REC CAL toggle switch(es) to their UP position. Press the REPRO switch(es).

Slowly vary the setting(s) of the REC potentiometer(s).

The level shown on the VU meter and heard on the Line Output varies in step with the record potentiometer.

Set the REC potentiometer(s) so that the meter(s) read -7dB.

The Line Output has a reduced level.
Press the BIAS button(s). (DOWN position). The VU meter reads the bias level (approximately 0 VU). 700 Hz tone is still heard on the Line Output.

Press the BIAS button(s) a second time, (UP position).

VU meter reading returns to $-7 \mathrm{~dB}(700 \mathrm{~Hz}$ Record level).

Return the REC CAL toggle switch(es) to their CAL (down) position.

VU meter reading returns to 0 VU .700 Hz tone from the Line Output returns to full output level.

Change the REPRO CAL toggle switch(es) to their UP position. Slowly vary the setting(s) of the REPRO potentiometer(s).

The level shown on the VU meter and heard on the Line Output varies in step with the reproduce potentiometer. (The 700 Hz tone is
being recorded at standard level - the reproduce gain is being varied).

Leave the REPRO potentiometer so that the meter(s) read -5dB.

Return the REPRO CAL toggle switch(es) to their CAL (down) position.

The output level shown by the VU meter and by the Line Output has returned to standard (0 VU).

Vary the setting of the REPRO potentiometer(s) and the REC potentiometer(s).

Output level does NOT change. Reproduce CAL switch and record CAL switch remove the potentiometers from the circuits.

Unlatch the electronics panel(s) and pull out so that the plug-in cards are visible.

Press the red button(s) at the front of the Reproduce Card(s) (Down position).

The green IEC LED(s) light above the reproduce potentiometer(s). (Equalization circuits on the Reproduce Cards have been switched to IEC standards).

Press the red button(s) a second time (UP position).

The green IEC LED(s) to OFF. (Equalization circuits on the Reproduce Cards have now been switched to NAB standards).

Press the red button(s) at the front of the Record Card(s) (down position).

The green IEC LED(s) light above the record potentiometer(s). (Equalization circuits on the Record Cards have been switched to IEC standards).

Press the red button(s) a second time. (UP position).

The green IEC LED(s) go OFF. (Equalization circuits on the Record Cards have now been switched to NAB standards).

SECTION 3 TAPE TRANSPORT

3.1 General Description

Functionally, the tape transport consists of four major systems: the control logic system, the capstan servo system, the tape tension servo system, and the autolocator system. Figure 3-1 illustrates the transport's four systems. The control logic, capstan servo, and tape tension servo systems are covered in this section. The autolocator is covered in Section 4 of this manual.

The control logic system generates commands which control the operation of tape transport. Inputs to the Control Logic Board come from the motion control switches and tape load sensor. Outputs from the Control Logic Board operate the indicator lights, reel motor brakes, pinch roller, and tape lifters. Motion and stop commands control the operating mode of the tape tension system.

The capstan servo system moves the tape past the heads at a constant velocity during play and record modes. Reference and speed switches select the reference frequency for the phase locked loop. The Phase Locked Loop Board, capstan motor, and capstan tachometer form the servo loop, which locks the capstan motor's speed to the selected reference.

The tape tension servo system keeps a constant tension on the tape during the stop, play, and record modes and reels the tape in the rewind and fast forward modes. Reel motor motion is servo controlled by the Analog Torque Board. Commands from the control logic select the servo reference which determines the speed and direc-
tion of the motors. The reel motors can also be controlled by signals from the MVC and the autolocator.

3.2 Control Logic

The control logic system consists of the Control Logic Board, the Interface/Lamp Driver Board, and three solenoid Driver Boards. Drivers on the Interface/Lamp Driver Board operate the motion control lights and the record relays. This board also buffers the autolocate and MVC commands. The Solenoid Driver Boards contain amplifiers which operate the reel motor brake, pinch roller and tape lifter solenoids in response to TTL signals from the Control Logic Board.

The Control Logic Board contains combinational logic circuits whose outputs control all the functions of the transport. Portions of the schematics have been redrawn to help you follow the signals through the logic. These drawings show the logic levels present for the mode indicated. If measuring these levels, remember, that outputs of the cross coupled latches remain constant until switched, and the outputs of the switches and pulse networks are momentary.

Figure $3-2$ shows the logic involved in the stop mode. The number inside each gate is the chip's IC number in the schematic diagram. Logic levels in the figure indicate the stop mode with tape in the tape sensor slot.

Figure $3-3$ shows the logic involved in the play and the play/record modes.

Figure 3-4 and 3-5 have the logic for the fast forward and rewind modes.

Figure $3-6$ shows the logic for the edit modes. Some of the circuits shown are located on the mother board. There are two edit modes, Edit and Edit'. Edit is initiated by pressing the EDIT switch after removing the tape from the tape sensor.

Edit'is initiated by pressing the EDIT switch with tape in the tape sensor.

Figure 3-7 shows the logic involved in the tape deck manual velocity control (DMVC) and remote manual velocity control (RMVC) modes and in moving the tape lifters.

Figure 3-2

Figure 3-3

Figure 3-4
Fast Forward
Commands

Figure 3-5
Rewind Command

Figure 3-7
MVC and Tape Lifter Commands

3.3 Capstan Servo System

3.3.1 Phase Locked Loop

Figure $3-8$ is a block diagram of the capstan servo system showing the phase locked loop, reference select logic, and the capstan dc motor. Whenever the play mode is initiated, the capstan motor accelerates to the selected speed. When the motor speed approaches the reference speed, the servo locks. Once lock is established the capstan turns at a constant speed.

The rectangular wave output from the phase comparitor is averaged by an active filter. The resulting dc level is then amplified and used to drive the capstan motor.

The capstan's speed is measured by a slotted disk and photo sensors mounted to the bottom of the capstan motor. This tachometer produces 500 pulses per revolution. The frequency of the pulse train is directly related to the motor speed. On the Capstan Tach Board, the tachometer output frequency is doubled and applied to a buffer on the Phase Locked Loop Board. This buffer clocks the one shot. At 15 ips this frequency is 9.6 kHz and can be measured at test point 1. The one shots fix the pulse widtths of the tachometer and reference waveforms to $5 \mu \mathrm{~s}$ as required by the phase comparator.

The phase comparator produces an output waveform whose duty cycle is proportional to the phase difference between the reference pulses

Figure 3-8
Capstan Servo Block Diagram
and the tachometer pulses. Specifically, the pulse width of the phase comparator output is equal to the time difference between the rising edge of the reference pulse and the falling edge of tachometer pulse. Prior to achieving lock the output of the phase comparator is latched high. After obtaining lock, the output has approximately a 30% duty cycle. If the tachometer pulses begin to lag behind the reference pulses, the duty cycle increases, speeding up the motor. As the motor speeds up, the phase difference between the two pulse trains decreases, decreasing the duty cycle of the phase comparator output and slowing the motor.

3.3.2 Reference Frequency

The reference frequency for the phase locked loop comes from one of three sources: a crystal oscillator, a VCO, or some external source. Figures 3-9, 10, 11, and 12 detail the reference selection circuit.

When the speed reference switch is in the FIX
position, a 96 kHz crystal oscillator provides the reference. The crystal frequency is divided down to 19.2 kHz and applied to the speed select circuit. The speed select switch and a binary counter choose the frequency reference for high, medium, and low speed operation.

When the speed reference switch is in the VAR position, the VCO supplies the input frequency to the speed select circuit. The center frequency of the VCO is 19.2 kHz . The output frequency can be varied by $\pm 20 \%$ with a ± 5 volt input. Either the variable speed control potentiometer (in VAR) or an externally supplied dc level (in EXT) provide the reference input to the VCO.

When the speed reference switch is in the EXT position an external frequency input is selected as the speed reference for the phase locked loop. For standard speed operation this signal should be 19.2 kHz . If no external frequency is present and the reference switch is in the EXT position, the reference circuit chooses the internal VCO as the reference input.

Figure 3-9
Internal Reference Circuit, Fixed

Figure 3-10
Internal Reference Circuit, Variable

EXTERNAL REFERENCE (When signal is present)

Figure 3-11
External Reference Circuit, With Signal

EXTERNAL INPUT

Figure 3.12
External Reference Circuit, Without Signal

3.4 Tape Tension Servo System

Figure $3-13$ is a block diagram of the tape tension servo system. All the circuits represented in the diagram are located on the analog torque board, except the phase locked loop and the motor drivers. The motor drivers for the reel motors are located in the power supply.

A positive signal applied to the reel motor drivers allows current to flow through the motors. This
current produces a torque which accelerates the motor. The torque is always applied in the direction to pull the tape. That is, the supply reel is always driven in a clockwise direction and the take up reel is always driven in a counterclockwise direction.

The tape tension servos are always active, whenever there is tape in the tape load sensor. Reel motor speed is continually adjusted to maintain a constant tension on the tape in all modes.

Commands from the control logic, through FET switches, select the servo loop involved in each mode. There are three tension servo loops: the idle servo loop for the stop mode, the play servo loop for the play and record modes, and the fast servo loop for the fast forward, rewind, autolocator, and MVC modes.

3.4.1 Idle Servo Loops

There are two idle servo loops, one for each reel motor. In the stop mode, they drive both reel motors in opposite directions to apply the required tension on the tape. With no tape reels mounted on the motors and a card in the tape sensor slot, you can see the reel motors turning in opposite directions, completing one revolution every three seconds.

The torque applied to the motors is set by the idle adjust potentiometers. The idle adjust level is summed with the dc output of the tachometers to resist any motion which tends to alter the tension on the tape. This provides a dynamic braking force which decelerates the tape when the STOP button is pressed, and prevents the reels from moving once they stop. In stop mode, the reels should only turn to take up slack in the tape path to restore the proper tension.

3.4.2 Play Servo Loops

There are two separate play servo loops, one for each reel motor. During play mode, the servos apply the torque required to keep the tape moving at a constant speed under constant tension. When properly adjusted, the reel motors actually transport the tape. The capstan motor only meters the speed of the tape, it does no work in pulling the tape across the heads.

The torque required to keep a constant tension on the tape depends on the amount of tape on each reel. Since the amount of tape on a reel changes continuously during play and record, the torque must be continuously adjusted. Divider circuits in the servo loops calculate the adjustments necessary to maintain the proper tension.

The tension applied to the tape is equal to the motor's torque divided by the effective radius, which is the distance between the center of the hub and the point at which the tape leaves the reel. This means that for any given torque, the ten-
sion decreases as the tape radius increases. Therefore, in order to keep the tape tension constant, the torque must increase as the radius increases. More torque is required for a full reel (large radius) than for an empty one (small radius).

The radius of the roll of tape is proportional to the speed of the tape divided by the speed of the reel motor. A full reel, which requires more torque because of its larger radius, turns slower than an empty reel, which requires less torque because of its smaller radius. The reel motor tachometer supplies a dc level indication of the reel motor speed. The capstan tachometer supplies a dc level indication of the tape speed. Analog dividers in the play servo loops divide the tape speed by the reel motor speed producing a torque signal proportional to the radius of the roll of tape.

In play or record mode, as the take up reel fills with tape, the torque is proportionally increased to pull the tape with the proper tension. The opposite happens to the supply reel whose radius decreases. It requires less torque to decelerate the reel to apply the proper holdback tension.

Some versions of the JH-110B use a mechanical (air dashpot) dancer arm flutter damper; others use an electronic flutter damper. The dashpot type is not electrically connected to the tape tension servo system. It operates as a shock absorber to smooth out variations in the tape's movement.

The electronic flutter damper produces an error signal that is summed into the supply motor play servo loop. A permanent magnet, connected to the dancer arm, is positioned directly over an inductor coil. Whenever the magnet moves over the coil it induces a current proportional to its velocity. This velocity signal increases or decreases the torque applied to the supply reel motor during play mode.

3.4.3 Fast Servo Loop

There is one feedback loop involved in the fast modes. The control logic selects the fast servo loop FETs in the fast forward and rewind modes, and when the transport is under autolocator or MVC control. Torque, applied by the servo, drives the tape at a constant speed selected by the FWD or RWD switches or by the autolocator or MVC analog velocity voltages.

The fast feedback loop consists of summation of the two reel motor tachometer signals. The fast loop servos when the combined speed of both reel motors reaches the control velocity at the fast comparitor. In the fast forward and rewind modes this is approximately 300 inches per second. From that point, the reel motors are accelerated only to maintain the speed selected by the.FET switches. The combined tachometer signals also produce
direction information for the autolocator's position display.

Torque limiting circuitry clamps the output of the fast comparitor to limit the maximum torque applied to the motor. The maximum torque is controlled by the torque limit switch(es) mounted on the transport deck.

PCA2500-0027

PARTS LIST
 CONTROL LOGIC BOARD PCA2500-0027

Molex Connector 9CIR 09-52-3093
Molex Connector 15CIR 09-52-3153
Diode 1N4004

$3=$

PARTS LIST
 PHASE LOCKED LOOP BOARD PCA2500-600

	Molex Connector 3CIR	09-52-3030
	Molex Connector 5 Pin	09-55-1052
	12 Pin Molex Connector	09-64-1121
	Diode	1N34
	Diode	1N4004
	Zener Diode	1N5231B-5.1V
	Zener Diode	1N5241-11V
	NPN Transistor	2N2270
\%	NPN Transistor, High Speed Switch	2N3053
	PNP Transistor	2N5783
	Crystal	96 kHz
	Function Genreator	NE566
	Potentiometer	TAPCPOT20K-1T
	Op Amp	TL081CP

PARTS LIST
 INTERFACE/LAMP DRIVER BOARD
 PCA2500-0416-00

Molex Connector
Diode
NPN Transistor
PNP Transistor
Op Amp
Op Amp
Potentiometer
Retriggerable One Shot

09-52-3030
1N4004
2N2270
2N5783
741CP
TL081CP
TAPCPOT1MEG-18T
74122

$$
\because \quad \therefore
$$

PARTS LIST
 SOLENOID DRIVER BOARD PCA2500-0042

3 Pin Molex Connector 09-64-1031
Diode 1N4004
Zener Diode 24 Volt
NPN Transistor 2N2270
NPN Transistor $\quad \therefore$ MJE-3055

```
    1.. ALL RESISTOR VALUES ARE IN OHMS, 1/4 W,5%
```



```
Photo Sensor Board

PARTS LIST
PHOTO SENSOR AMP BOARD
PCA 2600-0160
\begin{tabular}{ll}
\begin{tabular}{c}
10 Pin Right Angle \\
Molex Connector
\end{tabular} & \(09-66-1101\) \\
PNP Transistor & \(2 N 4354\) \\
NPN Transistor & PN3568 \\
Potentiometer & SAPCPOT2K-18T
\end{tabular}

\begin{tabular}{|l|l|l|l|l|}
\hline DRIVER BD & PA & PA-2 FUNCTION & PB & PB-2 FUNCTION \\
\hline \hline BRAKE SOL. & P41 & BRAKE LOGIC COMM & P37 & BRAKE SOL. DRIVE \\
\hline PLAY SOL. & P35 & PLAY LOGIC COMMAND & P34 & PLAY SOL. DRIVE \\
\hline Z"ROLLER SOL. & P3O & Z"ROLLER LOGIC COMM & P29 & Z"R'ROLLER SOL.DRIVE \\
\hline LIFTER SOL. & P25 & LIFTER LOGIC COMM & P23 & LIFTER SOL. DRIVE \\
\hline SHIELD SOL. & P20 & SHIELD LOGIC COMM. & PI6 & SHIELD SOL. DRIVE \\
\hline
\end{tabular} SC25B042
JH-110 SERIES

\section*{PARTS LIST SOLENOID DRIVER BOARD PCA2500-0042}
\begin{tabular}{ll}
3 Pin Molex Connector & \(09-64-1031\) \\
Diode & 1 N4004 \\
Zener Diode 24 Volt & 1N5252B-24V \\
NPN Transistor & \(2 N 2270\) \\
NPN Transistor & MJE-3055
\end{tabular}


\title{
PARTS LIST \\ PHOTO SENSOR AMP BOARD \\ PCA 2600-0160
}
\begin{tabular}{ll}
\begin{tabular}{l} 
10 Pin Right Angle \\
Molex Connector
\end{tabular} & \(09-66-1101\) \\
PNP Transistor & \(2 N 4354\) \\
NPN Transistor & PN3568 \\
Potentiometer & SAPCPOT2K-18T
\end{tabular}


\title{
PARTS LIST \\ TRANSPORT MOTHER BOARD PCA2500-0085-01
}

Molex Connector 3CIR
Molex Connector, 3 Pin Locking
Molex Connector, 4 Pin Locking
Molex Connector, 5 Pin Locking
Molex Connector, 3 Pin Non-locking
Molex Connector, 3 Pin Non-locking
Molex Connector, 4 Pin Non-locking
Molex Connector, 6 Pin Non-locking
Molex Connector, 8 Pin Non-locking
Molex Connector, 8 Pin Non-locking
Molex Connector, 9 Pin Non-locking
Molex Connector, 12 Pin Non-locking
Molex Connector, 3 Pin Locking Male
Molex Connector, 4 Pin Locking
Molex Connector, 5 Pin Locking
Molex Connector, 8 Pin Locking
Molex Connector, 10 Pin Locking
Molex Connector, 12 Pin Locking
NPN Transistor
Surgistor Diode
Op Amp

09-52-3031
09-55-1032
09-55-1042
09-55-1052
09-64-1032
09-64-1033
09-64-1042
09-64-1062
09-64-1082
09-64-1083
09-64-1092
09-64-1123
09-65-1030
09-65-1041
09-65-1051
09-65-1081
09-65-1101
09-65-1121
2N5681-S39568
ICTE-5-5V
TL081CP



\title{
PARTS LIST CAPSTAN TACH BOARD \\ PCA2500-0287-00
}

Molex Connector, 5 Hole 09-50-3051
Photo Cell
SP-7000-0212-00


JH-110 Series


NOTES:
TO BE AWG\# 22 STRANDED
2- ALL UNMARKED JUMPERS
TO BE AWG \(\# 22\) BUSS WIRE.
3.- OVerall Wire length is 38'-4".




\({ }_{\text {MOD-2GLE }}^{\text {ROLOID PUL }}\)











REMOTE CONNECTOR

SYNC CONNECTOR

\section*{SIGNAL NAME}

NC STOP Lite PLAY Lite FWD Lite RWD Lite REC Lite STOP CMD PLAY CMD REC CMD COUNT UP DOWN
Buffered Capstan Tach
\(+15 \mathrm{vdc}\) Ground \(-15 \mathrm{vdc}\)
19.2 kHz Inject

A／L ENAB A／L CMD A／L Analog

\section*{SERVO CONNECTOR}

SIGNAL NAME
\(-15 \mathrm{vdc}\)
play +15 vdc
NC
Buffered Capstan Tach \(+8 \mathrm{vdc}\) EXT DC Control \(G\) round NC
19.2 kHz Inject 24 vac

\section*{POWER CONNECTOR}

SIGNAL NAME
Supply Motor LO
Take－Up Motor LO
24 vac
\(+8 \mathrm{vdc}\)
\(+22 \mathrm{vdc}\)
Ground
\(+15 \mathrm{vdc}\)
Chassis Gnd
Record Hold
30 v Common
Supply Motor HI （ 30 vdc ）
RECORD Momentary
LO EQ
MED EQ
HI EQ
Supply AMP In
Take－Up AMP In


\title{
SECTION 4 \\ RTZ III \& AUTOLOCATOR III
}

\subsection*{4.1 General Description}

\subsection*{4.1.1 RTZ III}

The RTZ III is a microprocessor based position locator and velocity indicator. The microprocessor executes programs stored in its memory to perform the functions requested by the button switches on the display panel. Functions associated with each button switch are listed below.
TVI
(Tape Velocity Indicator)
Displays the tape velocity in inches per second while pressed. When released, display returns to position indication.

\section*{RTZ}

\section*{(Return to Zero)}

Locates tape to the position where zero was set on the display. The display is cleared to zero on power up and with the CLR button.

\section*{CLR}
(Clear Display)
Clears the position display to zero on the RTZ III. Does not affect the position memories.

On the RTZ IIIM, this button clears the previously displayed band, expand, or lead out position. When pressed simultaneously with SET, clears the display to zero.

\section*{STO}
(Store In Memory)
Allows storing the displayed position into one
of the location memories or lathe function memories.

\section*{1, 2, 3, and 4}

\section*{(Autolocate Memories)}

Locates the tape to the position stored in memory 1, 2, 3, or 4, respectively. Also used to store locations in memory and to set the display. To store the displayed location into memory, press and release STO, then press 1, 2, 3 , or 4.

To set the display, press and hold SET, then press \(1,2,3\), or 4 to increment the digit directly above the button.

\section*{SET}
(Set Display)
Allows presetting the display to any position, 0:00 to 99:59.

\section*{BND}
(Band RTZ IIIM Only)
Displays the band function positions stored in memory. Position is flashed three times on the display. The next consecutive position is displayed each time the BND button is pressed.

To store the displayed position as a band position, press and release STO, then press BND.

\section*{XPD}
(Expand, RTZ IIIM Only)
Displays the starting position followed by the ending position of the expand functions stored in memory. Each position is flashed three times on the display. The next consecutive expand
positions are flashed each time the XPD button is pressed.

To store expand positions into memory, press and release STO. Press XPD to store the displayed position as an expand start; release XPD to store the displayed position as an expand end.

\section*{OUT}

\section*{(Lead Out, RTZ IIIM Only)}

Displays the end of record lead out position with three flashes. Only one OUT location can be stored in memory.

To store the displayed position as the lead out position, press and release STO, then press OUT.

\subsection*{4.1.2 AutoLocator III}

The AutoLocator III is a microprocessor based position locator and velocity indicator. The microprocessor executes programs stored in its memory to perform the functions requested by the button switches on the front panel. The AutoLocator III is available on the \(\mathrm{JH}-110 \mathrm{C}-8\) only. It mounts directly above the remote unit and interfaces to the tape transport via a thirty-five foot long cable harness.

Operating voltages for the autolocator come from the transport. The AutoLocator III does not contain its own power supply, but does contain voltage regulators which produce +5 vdc from the transport's +8 vdc output. The transport's power supply also supplies \(\pm 15 \mathrm{vdc}\) to the autolocator as required by the amplifiers on the AutoLocator III.

The AutoLocator III contains two four digit LED segment displays; one displays the current tape position, the other displays the desired locate position. Both displays indicate tape position in minutes and seconds of playback/record time normalized to the standard (fixed) speeds.

A numeric keyboard enters digits into the locate position display. With each key strike the digits in the display shift to the left, entering the new digit in the rightmost column. If, by mistake, a number greater than 59 is punched into the seconds columns, the display will automatically convert the time into minutes and seconds. For example, if 78 seconds is entered into the locate position
display, it will be converted to 1 minute 18 seconds prior to the execution of any function.

Once a time (or position) is entered into the locate position display the transport can autolocate to that position simply by pressing the LOC button.

At any time while the transport is in stop, play, or record mode the current tape position can be loaded into a locate position memory. Pressing \(\rightarrow\) (shift right), STO (store), and any of the numeric keys stores the time from the tape position display into the corresponding locate memory. These positions can later be recalled and displayed in the locate position display by pressing RCL and the respective numeric key. The LOC button will then locate the transport to the position retrieved from memory.

The locate memories can be pre-loaded with any position by entering the time into the locate position display via the numeric keyboard. From the located position display the time is entered into the memory with the STO and numeric key sequence.

The position memory can be pre-loaded with any position by first entering the time into the locate position display via the numeric keyboard. Then, the \(\leftarrow\) (shift left) button, is used to shift the locate position into the tape position display, redefining the current tape position.

The \(\rightarrow\) (shift right) button, can be used to temporarily store tape positions into the locate position display for future locates or to mark the position for convenience.

The repeat function yo-yos the transport between the positions stored in memories 8 and 9. The transport, after pressing REP, autolocates to position 8 , drops into play mode, plays back up to position 9 , rewinds to position 8 , and drops into play mode again. This process will continue indefinately. It is cancelled by pressing the transport STOP, RWD or FWD button or the autolocator's LOC button.

For the repeat function to work, the tape position stored in memory 9 must be greater than the tape position stored in memory 8 . If this is not the case, and the REP button is pressed, the transport will autolocate to the position stored in memory 8 and stop.

The AutoLocator III also performs velocity control and velocity display functions. Pressing and holding the TVI (Tape Velocity Indicator) button displays the tape speed in the tape position display. Releasing the TVI button returns the autolocator to the position display mode.

If the tape transport's reference select switch is in the external (EXT) position, the MODE switch toggles between the fixed crystal speed reference and the variable dc reference level to the VCO. LEDs on the front panel indicate whether the fixed reference or the variable reference is selected.

In the variable mode the SPEED potentiometer on the autolocator controls the pitch in the same manner as the SPEED potentiometer on the transport deck when the transport is in VAR reference.

In variable reference mode, the TVI switch displays both the tape velocity in the tape position display and the pitch change in the locate position display. Pitch change is indicated in terms of semitones of the enharmonic scale. Only multiples of \(1 / 4\) semitones are displayed. The locate position display is blank unless the tape velocity is within \(\pm 0.03\) ips of a multiple of \(1 / 4\) semitone pitch change from the standard speed.

\subsection*{4.2 Hardware Functional Description}

The hardware for the autolocators is mounted on two printed circuit boards; a processor board and a display board. The processor boards for the RTZ III and the AutoLocator III are the same, PCA2500-0611. However, the two systems use different display boards. Even though both systems use the same processor boards, the processor boards are not interchangable. The AutoLocator requires a different program ROM to accommodate the additional functions and to handle the more massive tape reels. An additional processor plug-on board is used only on the \(\mathrm{JH}-110 \mathrm{M}\) machine to deliver interface outputs to the disccutting lathe. It is not used on the other recorders.

The basic operation of the hardware and software for all JH-110B transports is similar. The major difference between the standard RTZ III and the eight track's AutoLocator III is that the AutoLocator's display board contains circuitry for two multiplexed displays and for additional control buttons. The AutoLocator III also contains circuitry for tape speed control. These are not part of the microprocessor, and function separately from any of the microprocessor circuitry.

Refer to the block diagrams of the RTZ III and the AutoLocator III, figures 4.1 A and 4.1 B . The microprocessor, its memory and I/O ports are located on the Processor Board. The display and display encoders or controllers are located on the Display Board. Schematics for these boards are found at the end of this section.

The microprocessor communicates with its memory and I/O ports via the address and data bus. This bus is multiplexed, that is, it is used for both address and data. Addresses arrive on the bus first, followed by data. An address latch stores the bus address low order bits (A0 - A7) while the data is asserted on the bus. The high order bus address bits (A8 - A12) are not latched; these lines are not multiplexed.

Control signals from the microprocessor allow the memory or I/O ports to assert information onto, or receive information from the address and data bus. To fetch an address or an instruction from memory, the microprocessor asserts an address onto the bus and latches the address in the address latch. The memory then places the contents of that location on the bus for the processor to read. The microprocessor reads and writes data from and to the I/O ports using the command signals \(\overline{R D}, \overline{W R}\), and \(\overline{I / O M}\).

Data from the I/O ports is sent to the display encoders to operate the LED display and to the \(D\) to A converter to operate the reel motors. The I/O ports receive speed and direction information from the transport and commands from the display buttons.

RTZ III Block Diagram



\subsection*{4.3 Program Description}

The program which determines the operation of the microprocessor is stored in the program memory, a MOS PROM chip. The stored program is organized into a background loop, subroutines which perform certain tasks, and interrupt service routines which handle the interrupts. Subroutines, called from the background loop, calculate velocities, distances, and store data in temporary memory. The interrupt service routines respond to the switches on the display panel, and pulses from the tape roller guide and the capstan tachometer.

The programming cannot be altered. The RTZ III is not user programmable, the instructions and the structure of the program are fixed.

From power up, the processor executes instructions in the background loop. A simplified flowchart of the background loop is given in Figure 4-2. In this loop, the processor reads speed information, poles various flags, and updates the display. The speed select switch information is used to normalize the display so that it shows the correct position/time for the tape speed selected. If any flags are set, the program jumps to the appropriate subroutine to perform the requested task. When the subroutine function is completed the program returns to the background loop. At any time an interrupt will cause the program to vector to an interrupt service routine. After servicing the interrupt the program returns to the place in the background loop or subroutine where the interrupt occurred.
As an example, assume that while the processor is executing instructions in the background loop, the TVI switch is pressed setting the TVI flag. The program tests the flag and jumps to the TVI subroutine. A timer is set up and the capstan tachometer pulses are allowed to interrupt the processor through the interrupt logic. Every other capstan pulse causes a jump to the capstan interrupt routine which counts these pulses to determine the tape velocity. When the timer times out the velocity is calculated, displayed, and the program returns to the background loop.

Interrupts are also generated by the display button switches and the roller guide pulses. Each time the microprocessor receives a roller guide
pulse it vectors to the roller guide interrupt service routine. This routine updates, that is, increments or decrements, the display count and then returns to the background loop or subroutine where the interrupt occurred.

Pressing a button switch generates an interrupt which causes a jump to the switch interrupt service routine. The switch's numerical value from the keyboard decoder determines which subroutine is jumped to next. The interrupt routine reads the switch value and calls the corresponding subroutine. Once the subroutine performs the task requested by the switch, the program returns to the background loop.

\subsection*{4.4 RTZ IIIM Lathe Control Outputs}

\subsection*{4.4.1 Scully Lathe}

During playback, when the tape position matches the stored position, the appropriate function is output to the record lathe. The Band function consists of turning on an open-collector transistor for \(1 / 4 \mathrm{sec}\). The L-OUT function consists of turning on the same open-collector transistor for \(1 / 4 \mathrm{sec}\)., off for \(1 / 4 \mathrm{sec}\)., and back on for \(1 / 4 \mathrm{sec}\). The Expand transistor is simply turned on at the starting position stored, and off at the ending position stored.

\subsection*{4.4.2 Neumann Lathe}

During playback, when the tape position matches the stored position, the appropriate function is output to the record lathe. The BAND function consists of turning on an open-collector transistor for \(1 / 4 \mathrm{sec}\). The L-OUT function consists of turning on another open-collector transistor for \(1 / 4 \mathrm{sec}\). The EXPAND transistor is simply turned on at the starting position stored, and off at the ending position stored.

\subsection*{4.4.3 Interfacing Information}

Open-collector outputs are provided, as shown in Figure \(4-3\), in order to provide versatility in interfacing to various lathe machines. The outputs are capable of sinking up to 200 ma and can withstand 40 V collector to emitter. A four pin Molex connector is used for J10, which is located on the plug-on module on the RTZ III board.


Figure 4-2
Background Loop Flowchart


Figure 4-3
Mastering Interface


\section*{PROMS}

MCl uses the following identification system on all PROMS. As there are several versions and rev. levels available, please take note of the following:


The following PROMS are currently in use in the RTZ III and RTZ III/M.

V1.0
V1.1
V2.0
V3.0
RTZ IIIIM (Neuman Lathe, Capps II)


\section*{PARTS LIST}

DISPLAY BOARD P/N 2500C0609-00

\section*{QUANTITY}
\begin{tabular}{cc} 
RTZ III & RTZ III/M \\
4 & 4 \\
2 & 2 \\
3 & 3 \\
4 & 7 \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1
\end{tabular}
\begin{tabular}{lll} 
P/N RTZ III & 1 & 1 \\
(See PROMS) & & \\
BMP61 & 1 & 1 \\
8085A & 1 & 1 \\
20P-DIP-HDR & 2 & 2 \\
40P-DIP-SKT & 3 & 3 \\
24P-DIP-SKT & 1 & 1
\end{tabular}
(RTZ III/M ONLY)
MP-DIP-SKT
20P DIP-HDR
MC-2600-0298-00
502-010-009
502-010-007
502-010-008
502-010-002
502-010-003
502-010-001

P/N RTZ III/M 1 (See PROMS)

WD2500-0617-01
WD2500-0617-02
SP7100-0047-00

1
4
1

22463R-04

1
1
4
1

RTZ III \& III/M - JH-110B
DATA INTERCONNECT HARNESS
MATRIX HARNESS
STANDOFF
BEZEL

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{PART} \\
\hline NUMBER & DESCRIPTION & QUAN. & DESIGNATOR \\
\hline PCA2500-0610-00 & PCA, DISPLAY BD A/L III & 1 & \\
\hline 09-65-1021 & MOLEX 2PIN LOCK 3/4" & 1 & \\
\hline 09-65-1051 & MOLEX 5PIN LOCK 3/4" & 1 & \\
\hline 1-87227-0 & 20PIN DOUBLE POST DIP & 2 & \\
\hline 1.0-KOHM5\%-1/4W & CARBON FILM RESISTOR & 2 & R3, R10 \\
\hline 10--KOHM5\%-1/4W & CARBON FILM RESISTOR & 2 & R4, R5 \\
\hline 150--OHM5\%-1/4 W & CARBON FILM RESISTOR & 2 & R7, R8 \\
\hline 180--OHM5\% \({ }^{-1 / 4}\) W & CARBON FILM RESISTOR & 1 & R6 \\
\hline 1N5231B-5.1V & DIODE, ZENER-SILCN 5.1V-5 & 1 & CR7 \\
\hline 1N914 & DIODE, SIGNAL-SILCN GLASS & 2 & CR1, CR7 \\
\hline 22--KOHM5\%-1/4 W & CARBON FILM RESISTOR & 1 & R9 \\
\hline 220--OHM5\%-1/2W & CARBON FILM RESISTOR & 1 & R13 \\
\hline 22P-DIP-SKT & DIP SKT AUGAT 522-AG-11D & 1 & \\
\hline 28P-DIP-SKT & DIP SKT AUGAT 528-AG-11D & 2 & \\
\hline 2:2MF50V-CLYRL & LYTIC RAD/LD SEALED (LL) & 1 & C11 \\
\hline 2N3906 & TRANSISTOR & 2 & Q1, Q2 \\
\hline 3.3-KOHM5\%-1/4W & CARBON FILM RESISTOR & 1 & R1 \\
\hline 3540S-1-103 & 10K 10TURN LIN PANEL MOUNT & 1 & R11 \\
\hline 4114R-001-470 & 47 OHM 14P-DIP BOURN DIP & 2 & RN1, RN2 \\
\hline 47---OHM5\%-1/4W & CARBON FILM RESISTOR & 1 & R12 \\
\hline 47MF35V-CLYRL & LYTIC RAD/LD SEALED (GP) & 2 & C6, C8 \\
\hline 741CP & OP AMP & 1 & IC5 \\
\hline 7437 & QUAD 2-IN NAND BUFFER & 1 & IC7 \\
\hline 74C912 & IC DISPLAY CONTROL NATL & 2 & IC1, IC3 \\
\hline 74LS74 & IC DUAL D FLIP FLOP & 1 & IC6 \\
\hline :0068MF400V-CMY & MYLAR CAPACITOR MEPCO & 1 & C1 \\
\hline
\end{tabular}

PART
NUMB
1MF100V-CCD20 DS8692
MAN-3640A
MC-6000-0404-01
MC-6000-0404-02
MC-6000-0404-03
MC-6000-0404-04 MC-6000-0404-05 MC-6000-0404-06 MC-6000-0404-07 MC-6000-0404-08 MC-6000-0404-09
MC-6000-0404-10
MC-6000-0404-13
MC-6000-0404-14
MC-6000-0404-15
MC-6000-0404-16
MC-6000-0404-17
C-6000-0404-19
MC-6000-0404-19
MC-6000-0404-20
MC-6000-0
V5555
TAPCPOT10K-1T
XC209G

\section*{DESCRIPTION}

CERAMIC DISC CAPACITOR IC DISPLAY DRIVER NAT'L DISPLAY MONSANTO SW D-6 SW D-6 " 2 "
SW D-6 " 3 "
SW D-6 " 4 "
SW D-6 " " " ",
SW D-6 " 6 "
SW D-6 " 7 "
SW D-6 "8"
SW D-6 " 9 "
SW D-6 " 0 "
SW D-6 "0"
SW D-6 "STO"
SW D-6 "RCL"
SW D-6 "REP"
SW D-6 "LOC"
SW D-6 "TVI"
SW D6"MOD
SW D-6 "MODE
SW D-6 " \(\rightarrow\) "
LED RED MONSANTO PRECISION TIMER BU3386F-1-103/BK72MR10K LED GREEN

QUAN. DESIGNATOR
C2, 3, 4, 5, 7, 9, 10 IC2
DS1-DS8
DS1
S2
S2
S 1
S 1
S 8
S 8
S
S
S7
S6
S6
S5
S5
S12
S11
S4
S13
S9
S16
S10, S15
S10, S15
S14
S19
519
S 20
S20
S17
S 18
S18
CR2, 3, 4, 5
IC4
R2
CR6




NOTES
1. OVERALL CAELE LENGTH 1540 FEET.
2. ALL WIRES ARE AWG. 22 STRANDEO, EX
2. AL WIEESARE AWE*TRSTRADED. EXCEPT

CABLE SHIELD WIR
STRANDED BARE.
3 * DENOTES WRES WHICH ARE NOT PARTC
EABLE SP \(7000-0254-00\) ( B WIRES)


JH-47 Remote Readout


JH-47 Remote Readout Cable





Audio Circuit Board Locations

\title{
SECTION 5 AUDIO ELECTRONICS
}

\subsection*{5.1 General Description}

The JH-110B Audio Electronics typically consists of six printed circuit boards: the Strip Board, Mother Board, Repro Board, Record Board, Bias Board, and I/O Board. Variations in the circuitry contained on these boards are indicated on the schematic diagrams and described in Sections 5.4 and 5.5.

The Strip Board mounts at the back of the audio drawer and provides power and control connections to the Mother Boards of both channels. In the top drawer, the Strip Board contains a 120 kHz master oscillator. Bias and erase signals for all channels are derived from this oscillator.

The Mother Board forms the interconnections between the Repro, Record, Bias, and I/O Boards. These boards, and the record and cue relays, mount directly onto the Mother Board connectors. All the input and output signals are routed through this circuit board.

The Repro Board contains the playback amplifiers and equalization networks. Equalization may be switched to either NAB or IEC standards. Switches on the front panel select the input to the board. The REPRO switch selects the repro head as the
input. In Repro, the output level can be adjusted with the front panel REP level control. The CUE switch selects the record head as the input to the Repro Board. The INPUT switch connects the line input from the Record Board to the Repro Board for monitoring the input to the transport.

The Record Board contains amplifiers and equalization networks for the input signal to the record head. Record level is adjusted with the level control on the front panel. A switch on the circuit board selects either NAB or IEC standard equalization.

The Bias and Erase Board contains amplifiers which supply the bias signal to the record head and the erase signal to the erase head. Bias and erase current are applied to the heads only when the READY switch is pressed in, the SAFE switch is out, and the transport is in record. The BIAS switch on the front panel connects the bias signal to the channel VU meter for an indication of bias current.

The I/O Amplifier Board contains balanced amplifiers for the line. input and line output signals. The VU meter indicates the line output level from the I/O board.

This machine conforms to the IEC 268 standard for XLR-3 type connectors.
\[
\begin{array}{ll}
\text { Contact 1 } & \text { SHIELD } \\
\text { Contact 2 } & \text { SIGNAL HIGH } \\
\text { Contact } 3 & \text { SIGNAL LOW }
\end{array}
\]

This machine also conforms to the proposed Stodolsky Magnetic Polarity standard, i.e. tape magnetization in the direction of normal tape motion is defined as positive.

\subsection*{5.2 Record Mode}

Figure 5-1, a block diagram, illustrates the circuits involved in the record mode for one channel. Record mode is initiated by pressing the record READY switch button on the front panel and pressing RECORD on the transport. The channels are controlled independently allowing recording and erasing on one, or more, channels while the other channel, or channels, are in the Repro mode.

A shielded cable from the line input audio connector plugs into the I/O Board. Differential input amplifiers amplify the audio input and apply it to the record level potentiometer. If the REC CAL switch is in the CAL position, the calibrated record potentiometer sets the input level to the Record Board.

A parallel signal processing technique is used on both the Record and Repro Boards in the JH-110B audio electronics. This split signal equalization compensates for the amplitude distortion caused by the different gain characteristics at various frequencies. It gives an improved square wave response over previous series processing techniques. The equalization networks can be aligned to either NAB or IEC standards. Once aligned, pressing a button on the circuit board switches the equalization standard.

On the Record Board, the audio signal splits into two paths which are summed together, out of phase, by a summing amp. The lower path in the block diagram, takes the audio signal through a differentiator and the high frequency equalization networks. The differentiator takes the time
derivative of the audio signal, that is, the output amplitude increases with frequency and the phase is shifted by \(90^{\circ}\) at all frequencies. The equalization networks adjust the high frequency gain characteristics for each of the transport speeds. Signals from the transport speed select switch enable FET switches in the networks to select the corresponding equalization.

The summed signal, Record Out, mixes with the bias signal and is applied to the record head through the record and cue relays. A bias trap prevents the bias signal from feeding back into the Record Board circuitry.

Bias, and the erase signal, come from the master oscillator in the top drawer Strip Board. On the Bias Board FET switches, controlled by the transport speed select switch, select the bias level, ramp time, and the bias and erase timing.

QUIOR circuits (Quiet Initiation Of Record) reduce punch-in and punch-out noise normally associated with switching in and out of record mode. Whenever the bias and erase currents are turned on or off, the amplitude of the current is ramped to minimize transition noise. Also, the erase current is always ramped on and off before the bias current. This is done to compensate for the physical distance between the erase and record heads. The bias current delay is equal to the time it takes the tape to travel the distance between the two heads. Figure 5-2 illustrates how the QUIOR circuits eliminate overlapping and blank spots on the tape during record punchin and punch-out.


Figure 5 .1


The line output and the input to the VU meter in Record mode are selected by the Repro switches: REPRO, INPUT, and CUE. With the REPRO switch pressed, the input to the Repro Board is the audio signal just recorded on the tape and picked up by the repro head. The amplitude of the repro signal can be controlled with the REP level control on the front panel.

With the INPUT or CUE switches pressed in, the input to the Repro Board is the line input from the input calibrate potentiometer on the Record Board. This level is set during alignment; the REP level control has no effect on the line output level when INPUT or CUE are pressed in.

\subsection*{5.3 Reproduce Mode}

Refer to Figure 5-3, the Repro mode block diagram. There are three inputs to the Repro Board. The input is selected by the front panel Repro switches which operate FET switches on the Repro Board. With the INPUT switch pressed, the input level is set by the input calibration potentiometer on the Repro Board. The REPRO and CUE switches select the playback signal from the heads; REPRO selects the repro head, CUE selects the record head.

Differential input amplifiers receive the playback signal, amplify it, and split it into two paths for frequency amplitude and phase compensation. The two signals are summed to produce standard response characteristics. The high frequency equalization network selected by the speed select switch determines the gain of the high frequencies at the summing amp.

The low frequency path includes equalization networks and an integrator. The integrated audio signal is shifted in phase at all frequencies by \(90^{\circ}\). The amplitude diminishes as the frequency increases.

The REP level control adjusts the line output in REPRO. If the REP CAL switch is in the CAL position, the output level is set by the cal repro potentiometer. In CUE, the output level is set by the cue level potentiometer.

\subsection*{5.4 Broadcast Audio Electronics}

The bottom audio drawer contains a Strip Board, Mother Board, I/O Amplifier Board, Record Board, Repro Board, and Bias Board. Signal flow in the Record and Repro modes is similar to that of the standard electronics. Differences in the broadcast electronics are indicated in the schematic diagrams.

Record mode in the broadcast electronics is initiated by pressing the transport PLAY and RECORD buttons at the same time. There are no Record Ready and Safe switches on this audio panel. Both channels enter Record mode simultaneously.

Since this is a two speed machine, there are only high speed and low speed equalization networks on the Record and Repro Boards. The Record and Reproduce levels for each speed are set by the HI LVL and LO LVL potentiometers on these boards. There are no front panel level controls.

The Bias Board used in the broadcast electronics is the same as the one used in the standard electronics. However, the erase signal is sent to a full width mono erase head. Both channels are always erased in either the stereo or mono modes.

The Broadcast I/O Board is the same as the standard I/O Board. In this transport, the line out amplifier does not drive the VU meter directly. Amplifiers on the Monitor Amp Board drive the VU meters.

Refer to the Monitor Amp Board block diagram, Figure 5-4. It represents the circuits and switches mounted in the top drawer.

In stereo mode the Repro output signals from the right and left channels are switched to their respective line output connectors. Buttons on the front panel switch either the right channel, left channel, or a mix of both to the speaker. The VU meters measure either the line input or line output signals of each channel as selected by the meters switches.

In mono mode the Repro output signals from the right and left channels are summed together and sent to the left line output connector. The left line input is applied to both channel inputs. The left channel VU meter can be switched to measure either the left line input or the left line output.

\subsection*{5.5 Mastering Audio Electronics}

Each channel in the Mastering deck contains standard reproduce audio electronics. There are no Record or Bias Boards, and the I/O Amplifier Board has no input amplifiers. Differences in the Mother Board and Repro-Boards are indicated in the schematic diagrams.

A Front Panel EQ Board, unique to this transport, duplicates the function of the high and low frequency equalization networks on the Repro Board. Potentiometers on the front panel adjust these equalization networks located on the EQ Board. A switch on the front panel can select the standard
equalization aligned on the Repro Board. Or, it can select the equalization adjusted by the front panel controls.

\subsection*{5.6 Eight Track Remote}

The JH-110C eight-track recorder can be remotely controlled by the optional remote unit. This remote unit controls both the transport functions and the output mode of the electronics. Control switches on the remote unit override the function of the repro, input, and cue switches on the audio panel. A switch mounted on the audio mother board, inside the audio drawer, selects either local or remote control of the monitoring circuits. The operation of the eight track remote unit is identical to the operation of the remote unit used with the JH-24 Multitrack Recorder. Similar to the Multitrack remote unit, the eight track remote unit provides mounting space and connections for the optional AutoLocator III.


Figure 5-3


Figure 5.4
Monitor Amp Block
(由)


\title{
PARTS LIST \\ RECORD BOARD PCA2700-0914
}
\begin{tabular}{ll}
\begin{tabular}{c} 
Right Angle Molex \\
Connector 5CIR
\end{tabular} & \(09-52-3051\) \\
\begin{tabular}{c} 
Right Angle Molex \\
Connector 6CIR
\end{tabular} & \(09-52-3061\) \\
Zener Diode, 5.1v & 1 N 5231 B \\
Diode & 1 N 914 \\
Op-Amp & 2003 P \\
Transistor & 2 N 3904 \\
4 Pole Locking Switch & SP-7000-2305-14 \\
Card Pull & MC-2700-0061-01 \\
FET & P1086RR \\
Potentiometer 2K & SAPCPOT2K-18T \\
Potentiometer 5K & SAPCPOT5K-18T
\end{tabular}


\section*{PARTS LIST REPRODUCE BOARD PCA2700-0913-03}

Right Angle Molex
Connector 3CIR 09-52-3031
Right Angle Molex
Connector 5CIR
09-52-3051
Right Angle Molex Conector 8CIR

09-52-3081
Tantalum Capacito
100MF20V-CTA10
Op-Amp
Delevan Choke, 2500-04
330 MH
100K Resistor Network
4 Pole Locking Switch
SP-7000-2305-14
Transistor
LM394H
MC-2700-0060-01
Card Pull Lable MC-2700-0060-04
P Channel FET P1086RR
Potentiometer 20K SAPCPOT20K-18T
Potentiometer 5 K
SAPCPTO5K-18T


\title{
PARTS LIST BIAS/ERASE BOARD PCA2700-0055-02
}
\begin{tabular}{ll} 
Molex Connector 6CIR & \(09-52-3061\) \\
Molex Connector 10CIR & \(09-52-3101\) \\
Zener Diode & 1 N5245B-15V \\
Op Amp & \(2003 P\) \\
Delevan Choke & 2700 MH \\
PNP Transistor & 2 N5679-S39569 \\
NPN Transistor & 2N5681-S39568 \\
Card Pull & MC-2700-0045-01 \\
Card Pull Lable & NPC-139 \\
\hline Transistor, selected & P1086 \\
\hline P Channel FET & SAPCPOT5-02 \\
P Channel FET, selected & TL0800-18T \\
Potentiometer & SP-7000-0111-00 \\
\hline Potentiometer & SP-9000-0119-00 \\
\hline Quad OP Amp & TAPCPOT10K-18T \\
\hline Transformer & TAPCPOT10K-1T \\
\hline Torroid Transformer & Potentiometer
\end{tabular}


\section*{PARTS LIST \\ I/O BOARD PCA2700-0619-00}

Right Angle Molex Connector 3CIR

Right Angle Molex
Connector 4CIR
Right Angle Molex Connector 5CIR

5 Pin Molex Connector, Locking

Op-Amp
Delevan Choke, 2500-04
Card Pull
Card Pull Lable

09-52-3041

MC-2700-0045-01
09-52-3031

09-52-3051

09-65-1051
2003P
330 MH

MC-2700-0082-07

\section*{Differential Output Symmetry Adjustment}

NOTE: Perform this adjustment ONLY if components in the line output circuitry have been changed.
1. Connect a signal generator to the line input. Set the controls for a 1 kHz signal at +4 dBv .
2. Press INPUT. Monitor the line output with a dual trace oscilloscope. Connect the oscilloscope channel A input between the line output high and ground. Connect the oscilloscope channel B input between the line output low and ground. The vertical sensitivity of each channel must be the same.
3. Adjust potentiometer R27 so that both signals have equal amplitude.

If you do not have access to a dual trace oscilloscope, an ac voltmeter may be used. Alternately measure each output, referenced to ground, and adjust for equal meter readings.


\section*{PARTS LIST \\ AUDIO MOTHER BOARD PCA2700-0917-00}

Right Angle Molex Connector 3CIR

Right Angle Molex
Connector 10CIR
3 Pin Molex Connector
09-64-1031

4 Pin Molex Connector
5 Pin Molex Connector

6 Pin Molex Connector
8 Pin Molex Connector
10 Pin Molex Connector
3 Pin Molex Connector, Locking
\begin{tabular}{ll}
\begin{tabular}{c} 
Pin Molex Connector, \\
Locking
\end{tabular} & \(09-65-1051\) \\
Rectifier Diode & 1 N4004 \\
Relay Socket & 27 E 007 \\
Relay Socket & 27 E 129 \\
Bi-Pin Socket & \(22-5\) \\
Transistor & \(2 N 5679-S 39569\)
\end{tabular}
\begin{tabular}{|c|c|}
\hline Trim Capacitor & 304-CT \\
\hline Trim Capacitor & 307-CT \\
\hline Delevan Choke, 2500-04 & 5000 MH \\
\hline Lamp, 28 volt & SP-7000-0550-00 \\
\hline Relay & HC4E-24VDC \\
\hline Relay & K4E24V-9 \\
\hline Switch Assembly & SP-7100-2307-06 \\
\hline Switch Assembly & SP-7100-2307-07 \\
\hline Potentiometer, 10K & TAPCPOT10K-1T \\
\hline Op-Amp & TL081CP \\
\hline VU Meter & 52-5488 \\
\hline Knob, black & 7FB2B2 \\
\hline 5K Audio Potentiometer & CM39704 \\
\hline 2K Audio Potentiometer & CM40846 \\
\hline LED, Amber & L41-1-0-000A \\
\hline LED, Red & L41-2-0-000A \\
\hline LED, Green & L41-4-0-000A \\
\hline Toggle Switch & MST-105D \\
\hline Shadow Switch & SP-7100-2305-06 \\
\hline & SP-7100-2305-07 \\
\hline RF Choke & F2365-1-Q1 \\
\hline
\end{tabular}


PARTS LIST
BROADCAST MONITOR AMP BOARD PCA2700-0080
\begin{tabular}{|c|c|c|}
\hline . & Molex connector, 3 pin locking & 09-65-1031 \\
\hline & Molex connector, 4 pin locking & 09-65-1041 \\
\hline & Molex connector, 5 pin locking & 09-65-1051 \\
\hline & Op.amp & TL084CN \\
\hline & Op amp & 2003P \\
\hline & Transistor & 2N3904 \\
\hline & Transistor & MJE-105 \\
\hline & Transformer & SP-7000-0110-00 \\
\hline & Transformer & SP-7000-0193-00 \\
\hline 才) & Lamp holder & 25-35 \\
\hline & Potentiometer & TAPCPOT10K-1T \\
\hline & Switch & SP-7100-2307-06 \\
\hline & Switch & SP-7100-2307-49 \\
\hline
\end{tabular}


\title{
PARTS LIST \\ FRONT PANEL EQ BOARD PCA2700-0915-00
}
\begin{tabular}{|c|c|}
\hline Right Angle Molex & \\
\hline Connector 5CIR & 09-52-3051 \\
\hline Right Angle Molex Connector 6CIR & 09-52-3061 \\
\hline 7 Pin Molex Connector & 09-65-1071 \\
\hline 8 Pin Molex Connector & 09-65-1081 \\
\hline Tantalum Capacitor, DIP & 15MF35V-CTA10 \\
\hline Op-Amp & 2003P \\
\hline Poly-Film Capacitor & 2200PF100V-CPF \\
\hline Metal Poly-Film Capacitor & 27MF100V-CMPF \\
\hline Metal Poly-Film Capacitor & 47MF100V-CMPF \\
\hline Tantalum Capacitor DIP & 68MF35V-CTA10 \\
\hline Card Pull & MC-2700-0045-01 \\
\hline Front Panel EQ Label & MC-2700-0082-08 \\
\hline P Channel FET & P1086RR \\
\hline
\end{tabular}


\section*{PARTS LIST \\ STRIP BOARD \\ PCA2700-0005-01}
\begin{tabular}{ll} 
Molex Connector & \(02-06-7103\) \\
Molex Connector 15CIR & \(03-06-2151\) \\
\hline 2 Pin Molex Connector & \(09-64-1021\) \\
\hline 10 Pin Molex Connector & \(09-64-1103\) \\
10 Pin Molex Connector & \(09-64-1101\) \\
\hline 10 Pin Molex Connector & \(09-64-1103\) \\
Zener Diode & 1 N5243-13V \\
Bias Coil & D-1021-10 \\
NPN Transistor & PN3568 \\
Potentiometer & TAPCPOT200-1T \\
Polycarbonate Capacitor & \(: 01 M F 160 \mathrm{~V}-\mathrm{CPCF}\)
\end{tabular}



NOTES: ULESS OTHERWISE SPECIEIED:
1. AL RESISTOR MAUES ARE IN OHMS, \(1 / 4 W, 5 \%\).











\section*{SECTION 6 POWER SUPPLY}

\subsection*{6.1 General Description}

The JH-110PS power supply mounts at the bottoms of both the variable profile cabinet and the high profile cabinet. All versions use the same power supply. Outputs from the power supply provide operating voltages for the transport, autolocator, and up to eight audio channels. Jumpers in the fuse holder plug adapt the power supply for use with either 100,115 , or \(220 \mathrm{vac}, 50\) to 60 Hz . A four amp fuse is required for 100 and 115 vac operation; a two amp fuse is required for 220vac operation.

Table 6-1 is a list of the regulated and unregulated voltage outputs and their use. The \(+18,+15,-18\), and -15 volt regulators are located behind an
\begin{tabular}{|ll|}
\hline \multicolumn{1}{|c|}{ TABLE 6-1 } \\
VOLTAGE & WHERE USED \\
24VAC unregulated & MVC \\
+30 VDC unregulated & Reel Motors \\
+8 VDC unregulated & \begin{tabular}{l} 
Transport +5 volt logic \\
supply regulator
\end{tabular} \\
+22 VDC regulated & \begin{tabular}{l} 
Capstan motor, solen- \\
oids, LEDs, and lights
\end{tabular} \\
\(\pm 18 \mathrm{VDC}\) regulated & \begin{tabular}{l} 
Audio Amplifiers
\end{tabular} \\
\(\pm 15 \mathrm{VDC}\) regulated & Transport Amplifiers
\end{tabular}
access cover on the front of the power supply chassis. The 22 volt regulators are located on the Motor Driver Board which is part of the chimney assembly.

\subsection*{6.2 Motor Driver Board}

The Motor Driver Board mounts on top of a metal enclosure which is part of the fan assembly called the chimney. Two heat sinks for the reel motor drivers and 22 volt regulators fit inside the enclosure directly behind the fan. The chimney assembly is easily removed from the power supply chassis by turning four quick release fasteners.

The supply motor and take up motor driver circuits on this board are actually part of the tape tension servo system. Both reel motors connect to the unregulated 30 volt supply. The motor driver transistors, mounted on the heat sink, allow current to flow through the reel motors in response to commands from the Analog Torque Board.

There are presently two types of Motor Driver Boards in the field, a PCA2600-0027 and a PCA2600-0033. These boards are not interchangable; they require different power supply chimney assemblies. The PCA numbers are screened on the boards. However, the easiest way to tell them apart is; the 0033 board has two adjustment potentiometers on it, while the 0027 board has none. The motor driver circuits on both boards are identical; the 22 volt regulators are different.

On the 0027 board, the 22 volt regulator circuit uses a 24 volt zener diode reference to control the output voltage. Current through the series pass
transistor, mounted on the heat sink, adjusts to compensate for load variations. Maximum current is limited by an overcurrent shunt.

On the 0033 board, there are two independent 22 volt regulators; one for the transport and one for the audio electronics. Regulation is performed by two monolithic regulators mounted on a heat sink.

\subsection*{6.3 Voltage Measurements and Adjustments}

The regulated output voltages from the supplies using the 0027 Motor Driver Board are not adjustable. If a voltage output is unsatisfactory, components will have to be replaced.

For power supplies using the 0033 Motor Driver Board, only the 22 volt supplies are adjustable. Any other voltages which are out of tolerance indicate a component problem.

Measure the \(\pm 18\) volt and \(\pm 15\) volt regulated outputs by removing the access cover on the front of the power supply. Test points for each regulator output are located behind the access cover. The \(\pm 15\) volt supply tolerance is approximately \(\pm 0.6\) volts. The \(\pm 18\) volt supply tolerance is approximately \(\pm 0.7\) volts. Each of these four supplies should have no more than 5 mv peak-to-peak ripple.

The 22 volt regulated supply should not vary by more than two volts. For supplies using PCA-2600-0027, measure this voltage on the Transport Mother Board from the rear of the cabinet. For supplies using PCA2600-033, measure these voltages by removing the chimney assembly from the chassis. If the supply's output is not \(22 \pm 2 \mathrm{vdc}\), perform the voltage adjustment.

Voltage Adjustment
1. Turn power off.
2. Remove the power supply chimney assembly.

Turn the four quick release fasteners.
Pull the chimney assembly out of the power supply.
Do not disconnect any of the cables.
3. Turn power on.
4. Connect the voltmeter's + lead to pin 12 of J1. Connect the voltmeter's - lead to either pin 14 or pin 15 of J 1 .
5. Adjust potentiometer R13 for a meter reading of +22 vdc .
6. Connect the voltmeter's + lead to pin 10 of J 1.
7. Adjust potentiometer R10 for a meter reading of +22 vdc .
8. Turn power off.

Remove the voltmeter leads.
9. Replace the chimney assembly in the power supply.

Two 5 volt regulators for the deck logic and RTZ logic are mounted on the frame supporting the Transport Mother Board. These regulators produce 5 volts from the eight volt unregulated supply. Measure these TTL supplies at the regulators.



Power Supply \& Motor Driver Board

\section*{PARTS LIST POWER SUPPLY ASA2600-0027-04}
\begin{tabular}{ll} 
6 Hole Cable Connector & \(09-50-3061\) \\
NPN Power Transistor & \(2 \mathrm{~N} 3055-\mathrm{H}\) \\
Rectifier Diode & 1 N 4721 \\
Bridge Rectifier & 250 JB 2 L \\
Power Transformer & SP-7000-0170-00 \\
-15 Volt Regulator & LM320KC-15 \\
+15 Volt Regulator & LM340KC-15 \\
-18 Volt Regulator & LM320KC-18 \\
+18 Volt Regulator & LM340KC-18 \\
Rectifier Diode & MR-752 \\
3 Pin Molex Connector & \(09-65-1031\) \\
12 Pin Molex Connector & \(09-65-1121\) \\
Rectifier Diode & \(1 N 4004\) \\
Zener Diode 24 Volt & 1N5252B-24V \\
NPN Transistor & \(2 N 2270\) \\
PNP Transistor & \(2 N 4249\) \\
NPN Transistor & \(2 N 5681-\) S39568 \\
Op-Amp & TL081CP
\end{tabular}

\title{
SECTION 7 MAINTENANCE
}

\subsection*{7.1 Equipment Needed}

MCI uses the following equipment to test and align its tape recorders. Your recording equipment must be periodically aligned to insure optimum performance. Carefully adhere to the following procedures, using the specified test equipment or test equipment of equal accuracy. Remember that the quality of the recording depends on the accuracy of the alignments. Verify the tape transport and audio alignments at least once a week to insure peak performance. Clean and demagnetize the heads before every recording session.

\section*{CAUTION}

Never clean the scrape flutter filter with head cleaner or alcohol. These solvents dissolve the lubricants in the jewel bearings and will eventually damage the assembly.

AC Voltmeter capable of reading at bias frequencies of 120 kHz

Hewlett-Packard Model 400FL
DC Voltmeter, electronic type, 0.3 volt, full scale Triplett Model 603

Audio Signal Generator
Krohn-Hite Model 5800
Frequency Counter
Hewlett-Packard Model 5381A
Flutter Meter
EMT Model 424

Intermodulation Analyzer
Crown model IMA
Wave Analyzer
Hewlett-Packard 3581A
Phase Meter
MCI Model JH-22
Spring Scales
Ametex 0-36 ounces ( 1.02 kgm ) and 1-10 pounds ( 4.54 kgm )

\section*{Oscilloscope}

Phillips Model 3232 ( \(2 \mathrm{mv} / \mathrm{cm}\) vertical sensitivity, 10 mHz bandwidth, 0.2 microseconds/ cm horizontal sweep)

\section*{NOTE:}

Never use any type of shielded leads for scope or meter when working with the 120 kHz Bias Oscillator, detuning and/or wrong readings will always occur. Use only open leads not more than 3 ft . long.

The following service aids are available from MCl Customer Service Department:

ALIGNMENT KIT (surface
blocks and height gauges) MCI number AS6B79 EXTENDER BOARDS
Reproduce board
Record board Bias board LOGIC ANNUNCIATOR BOARD

MCI number 27B51
MCl number 27 B 52
MCI number 27B53
MCI number 25B177


Figure 7-1 Tape Path

\subsection*{7.2 Tape Path Adjustments}

The Mechanical Tape Path is critical. Tapes recorded on a misaligned deck will not playback properly on any other deck. Adjusting the tape path corrupts all the other alignments. The tape path is relatively stable and will rarely require adjustment under normal use; however, check the alignment periodically.

\section*{CAUTION}

Improperly slit tape can make a properly aligned tape path appear to be out of alignment. Carefully select the roll of tape used in this procedure.

\subsection*{7.2.1 Turntable Height}

\section*{TEST}

Observe the spooling of the tape on the take up and supply reels. Tape should not rub against either reel flange; it should be centered between the two flanges.

Load a roll of tape. Use metal reels, insure that they are neither bent nor deformed.

Using the MVC Joystick, shuttle tape in both directions. Observe tape build up on each reel. Tape should not touch reel flanges. Release MVC Joystick.

Press FWD and observe tape, then, press RWD and observe tape. Tape should not touch reel flanges. Press STOP.

\section*{If Adjustments Are Necessary}

If the tape is not centered between the take up reel and supply reel flanges, raise or lower the turntable to center the tape. Turntable height is adjusted by adding or removing shims between the turntable and the reel motor.

To adjust turntable height:
Remove tape reel
Remove reel hub
Remove three screws securing turntable
Remove turntable
Install or remove shims to add or subtract required height
Replace turntable, screws, and hub Load a reel of tape and repeat above test

The following die-cut shims are available from Customer Service:
\begin{tabular}{lll} 
26B22-1 & (Blue) & 0.005 inch \(/ 0.127 \mathrm{~mm}\) \\
26B22-2 & (Brown) & 0.010 inch//0254 mm \\
\(26 \mathrm{~B} 22-3\) & (Yellow) & 0.020 inch \(/ 0.508 \mathrm{~mm}\) \\
\hline
\end{tabular}


Figure 7-2 Head Adjustments

\subsection*{7.2.2 Head Height}

Test
Check the head height, the heads must be centered in the tape path.

Press PLAY.
Observe the tape movement across the heads. Tape should be centered between the two "gutters' (edge slots) machined into the record and repro heads. On the erase head, you should see equal amounts of darker metallic material above and below the tape.

\section*{If Adjustments Are Necessary}

If the tape is not centered between the gutters of the repro or record heads or centered over the erase head, turn the corresponding height, ZENITH, and AZIMUTH adjustment screws to center the head.

Turn the height adjustment clockwise to raise the head, counter clockwise to lower the head. Note that this screw moves the front of the head only. Turn the ZENITH adjustment the same number of turns in the same direction. This will raise or lower the back of the head. Turn the AZIMUTH adjustment in the opposite direction to compensate the tilt created by changing the height.

\subsection*{7.2.3 Head Zenith}

\section*{Test}

Check the Head Zenith alignments, head surfaces must be parallel to the fixed tape guides.

Loosen the two screws which secure the head assembly through the center of each fixed tape guide.

Remove the head assembly by pulling it straight up from the deck plate.

Hold the head bridge assembly in such a way as to visually align the repro head behind the right hand fixed tape guide. The repro head surface should be parallel to the fixed guide.

Visually align the record head behind the repro head. The record head surface should be parallel to the repro head surface.

Visually align the erase head behind the record head. The erase head surface should be parallel to the record head surface.

\section*{If Adjustments Are Necessary}

If any head is not parallel to the fixed tape guide, turn the ZENITH adjustment screw, tilting the head until the surfaces are parallel.

\subsection*{7.3 Capstan Pinch Roller}

\section*{Test}

Check the Capstan Pinch Roller tension using a spring scale. The pinch roller should exert a 5 to 6 pound force against the capstan.

Attach the spring scale to the pinch roller shaft under the roller wheel.

Turn the transport power on and insert an opaque card in the tape sensor slot.

Press PLAY.

Press your finger lightly against the pinch roller.

Pull the spring scale toward the rear of the tape deck. Note the scale reading just as the pinch roller begins to slip. Scale should read between 5 and 6 pounds (approximately 2.5 kgm ).

\section*{If Adjustments Are Necessary}

If the tension is not between 5 and 6 pounds, adjust the lock nut at the end of the solenoid pull rod. Unlatch and open the transport deck plate. Turn the lock nut only a fraction of a turn and recheck the tension. Repeat until tension is within tolerance.


Figure 7-3 Tape Lif́ter Assembly

\subsection*{7.4 Tape Lifter}

\section*{Test}
1. Load a roll of tape. Put the transport into FWD or RWD mode. Observe the tape clearance at the heads.

Tape should clear the record head and the reproduce head by .050 in . ( 1.25 mm ) which is about the thickness of a dime.

Tape may be much closer to the erase head. It is permissable for the tape to very lightly touch the erase head or to just clear it.

Observe the fixed tape guides at the entrance and the exit of the head block. Tape should ride through the slots without skew or crinkling.

\section*{NOTE:}

Skewing and crinkling may occur if the tape lifters are adjusted for too much outward travel.
2. Put the transport into Stop mode. Tape lifters should move to their inward position.

Clearance between the tape lifters and the tape should be from .010 to .015 inches. The clearance at both pins should be equal.

\section*{If Adjustments Are Necessary}

With tape loaded, put the transport into Stop mode.
1. Adjust the clearance between the tape and the reproduce head.

Hold the manual tape lifter pin all the way to the left. Adjust the OUT LIMIT CAM.

Clearance between the tape and the reproduce head should be \(.060 \pm .010\) inches.
2. Adjust the clearance between the tape and the erase head.

Hold the manual tape lifter pin all the way to the left. Adjust the length of the lifter tie bracket.

Set the bracket length so that the tape barely clears the erase head.
3. Adjust the solenoid position.

Put the transport into FWD or RWD mode. The solenoid will pull in. Check that the solenoid spring is slightly stretched. Adjust the solenoid position if necessary.

NOTE:
If the spring is too tight, the solenoid will not seat properly. After the adjustment, switch from STOP mode to FWD mode several times and check that the plunger is moving in and out freely.
4. Adjust the tape lifter inward position.

Put the transport into Stop mode. The plunger limit bracket limits the inward travel of the tape lifters.

Adjust the plunger limit bracket so that the left tape lifter clears the tape by .010 to .015 inches \((.3 \mathrm{~mm}\) to .4 mm\()\).

Check that the right tape lifter clears the tape by the same amount as the left tape lifter, the two lifters must have the same clearance.

If the two clearances are not alike, the lifter tie bracket has not been properly adjusted. Go back to Step 2 of this procedure.

\subsection*{7.5 Dancer Arm Flutter Filter}

\subsection*{7.5.1 Air Dashpot Dancer Arm}

\section*{Test}

Dancer arm position depends partially on proper tape tension. Any change of reel motor adjustments will affect the normal position of the dancer arm.
1. Load a roll of tape. Shuttle half of the tape to the takeup reel, so that the tape load is balanced between the two reels.

The normal position of the Dancer Arm, in Play or Record mode, should now be near the center of its travel arc.
2. Put the transport into Stop mode. The dancer arm will rest near the right end of its travel arc.


Figure 7-4 Dancer Arm Assembly

Illuminate the dancer arm well enough to see its small movements.

Put the transport into Play mode. Observe the transition from Stop to Play mode several times. The arm should swing to the left - just touch the left end stop - then swing back to its normal center position.
3. The return to center position after touching the left end stop is controlled by the air damper adjustment.

If the system is underdamped, the dancer arm will overshoot its normal center position, and then return to center. The arm movements will be quick and relatively large. The dancer arm is not damping the small, quick tape movements which contribute to flutter.

If the system is overdamped, the dancer arm will be sluggish in its return to its normal center position. Two faults may be visible:
A. The tape may lose contact with the dancer arm for a fraction of a second while the arm is returning to center position.
B. The dancer arm may bounce back toward the left before it reaches its normal center
position. When the pressure in the air cylinder is momentarily high enough to overcome the mechanical spring tension.

The dancer arm is too sluggish to follow the small, quick tape movements which contribute to flutter.

The damping should be very close to critical. Critical damping can be defined as moving to its new position as quickly as possible without overshoot or oscillation.

\section*{If Adjustments Are Necessary}

\section*{CAUTION}

The following procedure requires sensitive fingers and careful visual judgments. The air damper adjustment requires a skill which is easily acquired, but needs careful attention to detail.

Do not change the factory settings until you have carefully evaluated the test above, and determined that the mechanism needs adjustment. Be sure that the proper tools are available before attempting adjustment or replacement of parts.

The four steel cables between the dancer arm and
the spring mounting braçet (top of deck) furnish the spring tension for the dancer arm. The tension may be adjusted by loosening the two screws which hold the bracket and moving (or twisting) the bracket.

Unthread the tape so that is does not interfere with the movement of the arm. Test-the tension at the normal center position as shown in the figure.

Pull the dancer arm to the center point of its arc. Be sure that you pull the spring scale at a right angle to the arm. Before reading the tension, tap gently (with a small object such as a pencil) on the spring scale so as to overcome its friction.

The tension should read 3 ounces on a \(1 / 4\) inch machine ( 85 grams), 4 ounces on a \(1 / 2\) inch machine ( 113 grams), and 5 ounces on a 1 inch machine (143 grams).

\section*{If Adjustments Are Necessary}

\section*{CAUTION}

This airpot damping cylinder is a delicate glass tube. Make all adjustments with great care. Never use excessive force.

Remove all damping by loosening the nut on the rear of the air cylinder. Use a \(1 / 4\) inch nut driver, not a screwdriver for this adjustment.

Feel the action of the air cylinder by repeatedly pushing the dancer arm from its rest position (right end stop) to the left end stop.

Slowly tighten the adjustment nut, no more than

Figure 7-5 Brake Adjustments

\(1 / 4\) turn at a time. As soon as you can feel the damping action of the air cylinder, turn the adjustment nut not more than \(1 / 8\) turn into the active adjustment range.

Replace the tape into its normal threaded configuration, and check the damping as in test 2 above.

Make very small adjustments and retest until you have achieved critical damping as described above.

\subsection*{7.5.2 Electronic Dancer Arm}

\section*{Test}

With tape loaded on the transport, place the transport into play mode. The dancer arm should not oscillate. Push the dancer to the right and to the left. Resistance to this motion should be felt in both directions.

If the dancer arm oscillates in play mode or offers no resistance to movement, suspect a problem in the flutter damper circuitry. If it is not a component problem, check the clearance between the magnet and the coil on the flutter damper circuit board. The gap should be .015 to .020 inches. The magnet should not extend over either end of the coil when the dancer arm is moved from one motion limit stop to the other.

\section*{If Adjustments Are Necessary}

To adjust the clearance or the centering of the magnet arm, loosen the hex socket screw on the magnet arm clamp. Rotate the magnet arm so that the magnet is centered over the coil when the dancer arm is centered between its motion limit stops. Insert a .020 inch feeler gauge between the
magnet and the coil to set the gap.

\subsection*{7.6 Reel Motor Brakes}

\section*{Test}

NOTE:
The following tests and adjustments apply to
the fail-safe mechanical brakes only. This system brakes the reels when the power is off or when the tape breaks.

Dynamic braking is furnished by the servo system which drives the reel motors.
1. Test the braking tension of both turntables in both directions.

Power is not needed for this test. Remove reels from the turntables. Move the turntables by hand.

The supply turntable should brake hard in the counter-clockwise direction and only half as hard in the clockwise direction.

The takeup turntable should brake hard in the clockwise direction and only half as hard in the counter-clockwise direction.

Spooling out direction brakes hard. Spooling in direction brakes only half as hard.
2. Test the brake release. Unplug both reel motors. Apply power to the machine. Insert an opaque card into the tape sensor slot. Brake solenoids should be on. Move the turntables by hand.

Both turntables should turn freely - with no drag in either direction.

\section*{If Adjustments Are Necessary}
1. If brake tension must be adjusted, remove power from the machine. Load an empty \(101 / 2^{\prime \prime}\) diameter NAB reel on the supply turntable. Wrap a cord several times around the reel hub in a clockwise direction. Be sure that the cord overlaps so as to lock the cord to the reel.

Attach a spring scale to the free end of the cord. Pull slowly outward with the spring scale. Do not allow the cord to rub against the reel flanges.

Read the maximum tension achieved before the reel turns. This reading should be 4 ounces \(\pm 1 / 2\) ounce ( \(113 \mathrm{gm} \pm 14 \mathrm{gm}\) ). This is the reeling in direction.

Remove the cord and wind in a counterclockwise direction. Read the maximum tension achieved before the reel turns. This reading should be 8 ounces \(\pm 1 / 2\) ounce ( 227 \(\mathrm{gm} \pm 14 \mathrm{gm}\) ).

If the tension does not meet these specifications, loosen the spring adjustment nuts and tighten or loosen the spring.

Change the reel to the takeup turntable. Repeat the procedure described above. Note, however, that the reeling in direction and the reeling out direction for this turntable are opposite from the supply turntable.

Braking tensions for the takeup reel are: 4 \(\pm 1 / 2\) ounce in a counter-clockwise direction and \(8 \pm 1 / 2\) ounce in a clockwise direction.
2. If the brake release must be adjusted, unplug both reel motors. Apply power to the machine. Remove the tape reel. Insert an opaque card into the tape sensor slot. The brake solenoids should be activated.

Both turntables must turn easily without brake drag. Inspect the brake assembly. Be sure that the solenoid is pulling ALL THE WAY into its seat. Too much spring tension will hold the solenoid out of its socket.

The brake band must not touch the drum when the solenoid is activated. The bracket which restricts the outward movement of the brake band is normally adjusted so that the movable end of the band is held closer to the hub than the fixed end of the band.

\subsection*{7.7 Tape Tension}

\section*{Test}

With tape loaded, put the transport into Play mode. The tensions of the supply reel and the takeup reel should balance so that the dancer arm rides close to the center point of its travel arc.

Test the tension of the tape with a finger on each side of the capstan. The tension should feel just about the same on each side.

Put the transport into FWD mode. Observe the ac-
celeration of the tape. Change into RWD mode. Observe the change from fast forward to fast reverse travel. If any jerkiness or loss of tension is observed at any time, then the adjustments on the Analog Torque Board will have to be checked.

\section*{NOTE:}

When initiating a Fast mode, high tape tensions occur during acceleration. The dancer arm will be driven to the extreme left end of its travel arc. After proper speed is attained, the dancer arm can return to its relaxed position.

The factors affecting the exact position of the dancer arm are:
1. The reeling radius of the supply reel.
2. The direction of tape travel.

\section*{If Adjustments Are Necessary}
1. DC Offset Null Adjustment (On Analog Torque Board)
A. Turn power on. Stop mode, with tape threaded and all reel motion arrested. (See Note below)

Connect the + lead of a dc voltmeter ( 1 volt full scale range) to TP 1. The -lead should be connected to TP 5 (ground).

Adjust R 12 for 0 volts. (This voltage can swing negative as well as positive.) It may be difficult to get an exact null. If this adjustment can be set within \(\pm 0.1\) volt, it will be satisfactory.
B. Repeat the above procedure for the takeup reel NULL adjustment by connecting the meter to TP 2, and adjust R 36.

NOTE:
If tape is in motion for the above adjustment, a null cannot be achieved. Motion can be stopped by removing tape from the photo cell. This should allow a rough adjustment, but proper alignment must be made with tape threaded through the photo cell. If motion still persists after this rough adjustment, it may be necessary to reduce the idle settings.

\section*{2. Idle Adjustment}
A. Remove tape. Block the tape break sensor with an opaque card inserted into the slot. Turn power On, Stop mode.

Adjust R 18 for a slow idle of the supply reel motor. (About 20 RPM or 1 revolution every 3 seconds.)
B. Repeat the above adjustment for the takeup reel motor by adjusting R 111.
C. Reload tape, Stop mode. The slow idle should take up the slack tape after loading.

\section*{NOTE:}

Idle speed should be set as high as practical as this will aid tape handling when entering Stop mode. The worse case may be observed with a full reel of tape vs an empty reel. Adjustments can be made during this test.

Reverse the position of the full reel and the empty reel. Be sure that the idle adjustments are not set high enough to produce tape creep.

\section*{3. Tension Adjustment}
A. With tape loaded (half of the tape on each reel) run machine in play at 15 ips.

Using a tension gauge, adjust left tape tension (supply motor) of tape leaving reel to:
\begin{tabular}{ll}
\(\mathrm{JH}-110 \mathrm{~B} 1 / 4\) inch tape & \(21 / 2 \mathrm{oz}\). \\
\(\mathrm{JH}-110 \mathrm{~B} 1 / 2\) inch tape & \(31 / 2 \mathrm{oz}\). \\
\(\mathrm{JH}-110 \mathrm{~B} 1\) inch tape & \(41 / 2 \mathrm{oz}\).
\end{tabular}
B. Check and adjust dancer arm for center of motion with machine in play at 15 ips , and half of the tape on each reel.
C. With machine in play, disengage pinch roller from capstan and adjust take up tension such that play speed ( 15 ips ) is simulated without benefit of pinch roller or capstan, such that dancer arm is re-centered.

At this time, with machine in play, you should be able to manually engage and disengage the pinch roller without any noticeable speed change. This means the capstan is doing no work, only metering the tape.

\subsection*{7.8 Capstan Speed}

\section*{Test}
1. Switch the REFERENCE switch into VAR mode, LO speed. With tape threaded, press the PLAY button.

Feel the tape motion by pressing the back of the tape with a finger.

Slowly vary the SPEED knob from lowest to highest setting. The tape speed should vary smoothly without sudden changes.
2. Change the SPEED switch into MED position. Repeat the above test.
3. Change the SPEED switch into HI position. Repeat the above test.

If these tests have shown smooth changes, with no sudden shifts or jerks, you may assume that the Phase Locked Loop circuit is maintaining its lock throughout the full range of speeds.

NOTE:
It is normal for the machine to switch to Stop mode whenever the SPEED switch is changed.

\section*{If Adjustments Are Necessary}
(See Section 3 for a complete schematic and board layout for the Capstan Tach Board. The capstan tach is mounted on the bottom end of the capstan motor, inside the metal bell.)
1. Check the capstan tachometer by connecting an oscilloscope to TP 1 on the Capstan Tach Board.

Set the REFERENCE switch to VAR, the SPEED switch to HI. Initiate Play mode. Turn the speed knob fully clockwise. Peak-topeak voltage should be 800 mv . with little amplitude jitter.

Adjust the cam located on the tach board for minimum amplitude jitter at TP 1.

See Section 3 for a complete schematic and board layout for the Phase Locked Loop Board.
2. Put the transport into STOP mode. No voltage should be present at TP 1 on the Phase Locked Loop Board.

Spin the capstan by hand. 4 to 5 volt pulses should be present at TP 1 while the capstan is turning.
3. To check the reference frequencies, attach a digital counter to TP 2 on the Phase Locked Loop Board.

Reference frequencies should read as follows:

\section*{Standard Model}
\begin{tabular}{lr} 
HI & \(19.2 \mathrm{kHz}(30 \mathrm{ips})\) \\
MED & \(9.6 \mathrm{kHz}(15 \mathrm{ips})\) \\
LO & \(4.8 \mathrm{kHz}(71 / 2 \mathrm{ips})\) \\
Low Speed Model, \(1 / 2 \times\) capstan \\
HI & \(9.6 \mathrm{kHz}(15 \mathrm{ips})\) \\
MED & \(4.8 \mathrm{kHz}(71 / 2 \mathrm{ips})\) \\
LO & \(2.4 \mathrm{kHz}(33 / 4 \mathrm{ips})\) \\
Low Speed Model, \(1 / 4 "\) capstan \\
HI & \(19.2 \mathrm{kHz}(15 \mathrm{ips})\) \\
MED & \(9.6 \mathrm{kHz}(71 / 2 \mathrm{ips})\) \\
LO & \(4.8 \mathrm{kHz}(3 / 4 \mathrm{ips})\)
\end{tabular}
4. To adjust the VCO calibrator, set the machine to external reference, HI speed. Connect the digital counter to TP 2 on the Phase Locked Loop Board.

Adjust the VCO calibrator (R18) to 19.2 kHz on the standard model or 9.6 kHz on the low speed \(1 / 2\) inch capstan model.
5. To set the phase locked loop circuit gain, load a roll of tape. Set the REFERENCE switch to VAR. Set the SPEED switch to HI. Turn the SPEED knob to full clockwise setting.

Attach a scope to TP 3 and select a vertical gain of \(2.0 \mathrm{v} / \mathrm{cm}\).

Adjust the LOOP GAIN control (R 42) for a duty cycle of \(+30 \%,-70 \%\).

\subsection*{7.9 Manual Velocity Control Test And Adjustment}

\section*{Test}

Load a roll of tape. Put the transport into Stop mode. Set the MVC Joystick well over to the right end of its travel arc. While maintaining good contact to the transport with one hand, touch the Joystick with the other hand.

The LED at the tip of the Joystick should come ON. The transport should go into fast forward motion (MVC mode). Move the Joystick left and right until you find the point of no movement (near the center).

Set the Joystick to the left end of its travel arc, establishing a fast rewind motion. Release the Joystick.

The transport should stop.

\section*{If Adjustments Are Necessary}

See Section 3 for a schematic and board layout of the Interface/Lamp Driver Board.

Adjust R3 on the Interface/Lamp Driver Board until the desired sensitivity is reached.

The centering adjustment is made by loosening the two set screws in the Joystick assembly. Hold the Joystick in the center position and turn the potentiometer with long-nosed pliers until a motion null is reached. Retighten the set screws.

Be sure that the Joystick does not short out to the deck plate at either end of its travel. Tabs on the potentiometer mounting bracket can be bent to restrict the travel of the Joystick.

\subsection*{7.10 Tape Load Photo Sensor Adjustment}

The operation of the tape load sensor is dependent on the ambient lighting conditions and the particular type of leader tape used. Perform sensivity adjustment with leader tape in the sensor, if used.

When power is applied to the transport, the deck
should be in stop mode with tape in the sensor. When tape is out of the sensor, the transport should be off. The adjustment potentiometer is located on a small PC board underneath the deck plate near the MVC control.

Turn the power on. Remove the tape from the tape load sensor.

Turn the sensivity potentiometer counter clockwise until the STOP light comes on.

Turn the sensivity potentiometer clockwise two turns.

\subsection*{7.11 Equalization And Biasing}

The audio electronics in the \(\mathrm{JH}-110 \mathrm{~B}\) can be aligned to either NAB or IEC standards. Align the record and reproduce cards to the standard used most. Push buttons on these cards select the standard desired; LEDs on the front panel indicate which standard is selected. Use an elevated level alignment tape ( \(250 \mathrm{nWb} / \mathrm{m}\) ) to align the electronics. There are two considerations to keep in mind when using these alignment tapes.

High frequencies recorded on the alignment tapes are subject to self erasure losses. Expect the high frequency tones to diminish in amplitude with age. Store and handle these tapes carefully. Replace the tape or compensate for the loss if the high frequency tones diminish to insure a proper frequency response.

The majority of \(1 / 4\) inch alignment tapes are full width recorded. At frequencies below 500 Hz the signal recorded in the guard bands is read by the head. This fringing effect, plus the phantom gaps due to the geometry and construction of the head, make the low frequency response seem bumpy rather than flat. These abnormalities in the low frequency range are, for the most part, caused by the full width recording. Once aligned as per Paragraph 7.12.12, the low frequency response will be flat under normal use with the proper guard band between the tracks.

There is an extremely complicated relationship between bandwidth, distortion, tape velocity and the amplitude of the bias signal recorded on the tape. Also, this relationship is different for each brand and type of recording tape manufactured. MCl has examined and tested various recording
tapes to find the optimum bias level which gives the greatest high frequency range with the lowest third harmonic distortion.

The amount of bias is determined by increasing the bias signal until the output level of a 10 kHz signal from the tape drops by a certain amount. This is referred to as over-biasing. After examining some of the most popular recording tapes, we have established the following levels of overbiasing.
\[
\begin{aligned}
& \text { Scotch } 250 \text { @ } 15 \mathrm{ips}, 71 / 2 \mathrm{ips} \\
& \begin{array}{l}
\text { Scotch } 250 \text { @ } 30 \mathrm{ips} \\
\text { Scotch } 226 \text { @ } 15 \mathrm{ips}, 71 / 2 \mathrm{ips}
\end{array} \\
& \text { Scotch } 226 \text { @ } 30 \mathrm{ips} \\
& \text { Scotch } 206 \text { @ } 15 \mathrm{ips}, 71 / 2 \mathrm{ips} \\
& \text { Scotch } 206 \text { @ } 30 \mathrm{ips} \\
& \text { Ampex } 456 \text { @ } 15 \mathrm{ips}, 71 / 2 \mathrm{ips} \\
& \text { Ampex } 456 \text { @ } 30 \mathrm{ips} \\
& \text { Agfa } 468 \text { @ } 15 \mathrm{ips}, 71 / 2 \mathrm{ips} \\
& \text { Agfa } 468 \text { @ } 30 \mathrm{ips} \\
& \text { 2dB overbias } \\
& 1 \mathrm{~dB} \text { overbias } \\
& 21 / 2 \mathrm{~dB} \text { overbias } \\
& \text { 1dB overbias } \\
& \text { 2dB overbias } \\
& 1 / 2 \mathrm{~dB} \text { overbias } \\
& \text { 3dB overbias } \\
& 11 / 2 \mathrm{~dB} \text { overbias } \\
& 3 \mathrm{~dB} \text { overbias } \\
& 1 \mathrm{~dB} \text { overbias }
\end{aligned}
\]

\subsection*{7.12 Audio Electronics Alignment}

MCI recording systems are aligned with MRL elevated level alignment tapes ( \(0 \mathrm{VU}=250\) nanowebers per meter).

\section*{NOTE:}

Standard recording level has been set at a fluxivity level of 185 nanowebers per meter ( \(\mathrm{nWb} / \mathrm{m}\) ).

An elevated level of 250 nanowebers per meter is used throughout these tests and adjustments. This level ( \(250 \mathrm{nWb} / \mathrm{m}\) ) corresponds to the 0 VU level referred to in these instructions.

The distortion level is tested at recording levels of +3 VU which is a fluxivity level of 9 dB above the standard level or \(370 \mathrm{nWb} / \mathrm{m}\).

\subsection*{7.12.1 Channel VU Meter Calibration}

Since the channel VU meters are used in several of the following adjustments, it is essential that their accuracy be confirmed before the following alignments are performed.

When no signal is applied to the channel, the meter needle should be aligned with the extreme left scale marker. If the needle is not directly over the mark, turn the mechanical adjustment screw
located directly under the meter to align the needle.

Connect a signal generator to the channel line input. Adjust the signal generator for a 1 kHz output.

Connect an ac voltmeter to the channel line output.

If tape is not loaded, place a card in the tape sensor slot. Place transport in STOP, select input mode.

Monitoring the ac voltmeter, adjust the output level of the signal generator to obtain a +4 dBv reading (OVU).

Adjust the Meter Trim potentiometer (R31 on the Audio Mother Board) for a OVU reading on the channel meter.

\subsection*{7.12.2 Reproduce Input Balance}

Check for balanced capacitance at the differential inputs of the Repro Board Front End Amplifier.

Connect an oscilloscope to the Repro Board output.

With no tape loaded, place a card in the tape sensor slot. Select LO speed. Place in RECORD.

Observe the 120 kHz signal on the oscilloscope.
Turn C34 on the Audio Mother Board to obtain a minimum amplitude 120 kHz signal.

\subsection*{7.12.3 Head Wrap Adjustment}

The Head Wrap adjustment is an eccentric mounting screw which controls the position of the head gap in relationship to the tape which is entering or leaving the head surface. The audio level peaks when the gap is located in the exact center of the angle so that the tape touches the head an equal distance on each side of the gap.

Set the CAL REP switch to CAL position. Press the REPRO button. Press the SAFE button.

Set the transport controls for a fixed reference.


Figure 7-2 Head Adjustment

Choose 15 ips speed. Put into Play mode. Locate the 10 kHz tone on the alignment tape. On the head block, turn the repro head wrap adjustment screw for peak output on the channel meter.

Press the CUE button. On the head block, turn the record head WRAP adjustment screw for peak output on the channel meter.

\subsection*{7.12.4 Reproduce Level Adjustment}

NOTE:
Instructions given below are for the use of elevated level tapes. If standard level tapes are being used, all instructions should read SET TO -3 VU instead of SET TO 0 VU .

Clean and demagnetize the heads. Load a 15 ips reproduce alignment tape.

Set the CAL REP switch to CAL position. Press the REPRO button. Press the SAFE button.

Set the transport controls for a fixed reference. Choose 15 ips SPEED. MED if standard machine, HI speed if low speed machine. Put into Play mode. Locate the 1 kHz level set tone on the alignment tape. On the Repro Card, adjust CAL REP for a reading of 0 VU on the channel meter.

Press the CUE button. On the Repro Card, adjust CUE LVL for a reading of 0 VU on the channel meter.

Adjust all channels as described above. The above adjustments set the gains of the reproduce circuits so that both the reproduce head and the record head (used as a reproduce head in cue mode) produce a standard level output.


Figure 7-6
Repro Card Adjustments

\subsection*{7.12.5 Azimuth Adjustment}

The Azimuth adjustment sets the relative phase of the tracks.

Two methods of adjustment are recommended.

\section*{Method 1}

An \(\mathrm{MCl} \mathrm{JH}-22\) Phase Meter is the ideal test instrument for this adjustment. This meter reads, directly in degrees, the relative phase of any two audio signals fed to its two inputs.

Connect the two outside tracks of the recorder to the two inputs of the phase meter.

Set the CAL REP switch to CAL position. Press the REPRO button. Press the SAFE button.

Set the transport controls for a fixed reference. Choose 15 ips speed. Put into Play mode. Locate the 10 kHz tone on the alignment tape. Adjust the AZIMUTH adjust screw for the reproduce head until you find the lowest relative phase reading on the phase meter.

Press the CUE button. Adjust the AZIMUTH adjust screw for the record head until you find the lowest relative phase reading on the phase meter.

\section*{Method 2}

A simultaneous reading of a Lissajous figure on your oscilloscope and observation of the output meters of all tracks will give a satisfactory Azimuth adjustment.

Set the oscilloscope up with the output of the two outside tracks connected to the vertical input and the horizontal input respectively.

Adjust the gain of the horizontal channel and the vertical channel to be as identical as practical.

Set the CAL REP switch to CAL position. Press the REPRO button. Press the SAFE button.

Set the transport controls for a fixed reference. Choose 15 ips speed. Put into Play mode.

Using the 10 kHz tone from the alignment tape as a signal, observe the Lissajous figure on your scope screen. Ideally, the figure should be a
straight line tilted exactly \(45^{\circ}\) from the vertical.
At the same time watch the output meters for all channels. DO NOT turn the AZIMUTH screw far enough for the output to drop more than a small amount.

Press the CUE button. Turn the record head AZIMUTH adjustment screw until the tilt of the Lissajous figure is \(45^{\circ}\) from vertical. AT THE SAME TIME, watch the output meters for all channels. DO NOT turn the AZIMUTH screw far enough for the output to drop more than a small amount.

\subsection*{7.12.6 Reproduce Equalization Adjustments.}

\section*{NOTE:}

In all of the following instructions for adjusting equalization circuits, both record and reproduce, we have assumed a standard speed machine - \(71 / 2,15,30 \mathrm{ips}\). If your machine is a low speed machine - \(33 / 4,7 \frac{1}{2}\), 15 ips - please mark your manual so that the designated alignment tapes match the speed of your machine.

Load the proper HI speed alignment tape on the machine ( 30 ips for a standard machine, 15 ips for a low speed machine). Locate the 10 kHz tone on the alignment tape.

Set the CAL REP switch to CAL position. Press the REPRO button. Press the SAFE button.

Set the transport controls for a fixed reference, HI speed. Put into Play mode. On the Repro Card, adjust the HI speed, HI frequency potentiometer < for 0 VU reading on the channel output meter.

Adjust all channels the same way.
Change to the appropriate MED speed alignment tape.

Change to MED speed. All other controls remain the same. On the Repro Card, adjust the MED speed, HI frequency potentiometer \(<\) for 0 VU reading on the channel output meter. (Use -10 dB for low speed machine.)

Adjust all channels the same way.

Change to the appropriate LO speed alignment tape.

Change to LO speed. All other controls remain the same. On the Repro Card, adjust the LO speed, HI frequency potentiometer \(<\) for -10 dB reading on the channel output meter.

Adjust all channels the same way.

The above adjustments flatten the high frequency response of the tape and the heads.

\subsection*{7.12.7 Erase Adjustments}

\section*{NOTE:}

A single 120 kHz oscillator supplies the power for all erase and bias functions in this recorder. It is located on the Strip Board for tracks 1 \& 2. This board is attached to the inner side of the rear panel of the electronics assembly. If your machine has more than two tracks, the Strip Board used for the other tracks is similar with the oscillator section cut away.

\section*{Frequency check}

NOTE:
The erase oscillator always operates when power is connected to the machine. This frequency check may be made with any setting on the controls.

Connect a frequency counter to C 1 on the Audio Mother Board (point C on Figure 7-7).

Using a tuning wand adjust T1 on channel \(1 \& 2\) Strip Board until the counter reads \(120 \mathrm{kHz} \pm 25 \mathrm{~Hz}\) in Record mode.

Set oscillator frequency for \(120 \mathrm{kHz} \pm 25 \mathrm{~Hz}\) while in record mode. Set to second peak, going。 in a clockwise direction.

\section*{Wave shape and amplitude check}

Connect an oscilloscope to point C on the Audio Mother Board. (Refer to Figure 7-7)

Connect a volt meter to J 10 pin 3.
Set oscillator gain pot (R9) on Strip Board for a meter reading of 1.75 volts rms.


Figure 7.7
Erase and Bias Adjustments

NOTE:
Changing the 120 kHz oscillater gain disrupts the bias alignments. The bias adjustments, Sections 7.12.8 and 7.12.9 must be performed if R9 is turned.

Monitor erase voltage on erase peaking capacitor (C1) on Audio Mother Board at point C.

Turn C1 throughout its range.
Do this to all channels. There should be no distortion of the sine wave on the oscilloscope.

If there is any distortion, reduce the voltage by adjusting R9. Do not reduce the voltage at J 10 pin 3 lower than 1.6 volts rms.

Adjust C1 for its peak voltage on all channels. This voltage should be 40 volts rms or greater.

\section*{Depth Of Erasure Adjustment}
(Erase head wrap and erase peaking adjustment)
Load a roll of bulk erased tape. Set the transport controls for a fixed reference, 15 ips . Put in Record mode.

\section*{Method 1}

Connect a Wave Analyzer to the channel under test. (Use HP 3581 or equivalent:)

Put the transport into Play mode. Zero the Wave Analyzer on the playback of the 1 kHz tone. REWIND. Put the transport into Record mode - No signal input. The Wave Analyzer should read -80 dB on each channel.

Make the following adjustments while reading the output from the Wave Analyzer.

Turn the erase head WRAP adjustment screw until a minimum reading is found on the Wave Analyzer.

Trim C1 (erase peaking) for minimum reading on the Wave Analyzer.

Adjust all channels in the same way.
Method 2 If a Wave Analyzer is not available.
Record several minutes of 1 kHz tone at 0 VU level. Record on all channels. Remove the signal
input. REWIND. Put the transport into Record mode with no signal input. Turn your monitors up to their highest level.

Make the following adjustments while listening to the monitors.

Turn the erase head WRAP adjustment screw until you hear a null in the 1 kHz tone coming from the monitors.

Trim C1 (erase peaking) for minimum 1 kHz tone coming from the monitors.

Adjust all channels in the same way.

\subsection*{7.12.8 Bias Adjustments}

Connect an ac voltmeter capable of reading at 120 kHz to the output of the Bias Card. Connect to point E on the Electronics Mother Board.

Load a roll of blank tape. Do NOT apply a signal.
Push the READY button.
Set the transport controls for a fixed reference, LO speed. Put into Record mode. Turn the LO potentiometer on the Bias Card fully clockwise. The voltage reading should be about 27 volts at point \(E\).

Repeat the above procedure for each channel.
Reset the transport controls to MED speed. Put into Record mode. Turn the MED potentiometer on the Bias Card fully clockwise. The voltage reading should be about 27 volts at point \(E\).

Repeat the abọve procedure for each channel.
Reset the transport controls for HI speed. Put into Record mode. Turn the HI potentiometer on the Bias Card fully clockwise. The voltage reading should be about 27 volts at point E .

Repeat the above procedure for each channel.

\section*{Bias trap adjustment}

Connect an ac voltmeter to the Bias Trap. Connect at point F on the Electronics Mother board (see Figure 7-7).

Load a roll of blank tape. Do NOT apply a signal.


Figure 7-8 Bias Card Adjustment

Push the READY button.
Set the transport controls for a fixed reference, MED speed, Record mode. Adjust C2 for minimum reading. The reading at point \(F\) should be less than 75 mv .

Adjust all channels in the same way.

\subsection*{7.12.9 Over-Bias Level}

MCl recommends overbiasing at 10 kHz due to increased resolution of the signal at the tape machine output.

Load a roll of blank tape. Apply a signal of +4 dB ( 0 VU ).

Switch the REP CAL switch to CAL. Press REPRO button. Press READY button.

Set the transport controls for a fixed reference, LO speed, Record mode. Adjust Bias potentiometer for peak, then overbias to meet frequency response and distortion specifications.

Read the VU meter of the channel being adjusted. With the transport running in appropriate speed, adjust the LO potentiometer on the Bias Card. First turn the potentiometer counter-clockwise to back off the reading well below peak value. Then turn the potentiometer clockwise to a peak reading. Continue turning clockwise until the reading drops by the amount given in Section 7.11 for the type of recording tape in use.

Adjust all channels in the same way.
Reset the transport controls to MED speed, Record mode. Overbias according to the recommendations in Section 7.11.

Reset the transport controls for HI speed, Record mode. Follow the adjustment instructions above.

After optimizing bias for all three speeds, switch the transport to the speed you use most (use MED speed if you have no preference).

Press the channel BIAS button
On the Bias Card, adjust BIAS CAL for a 0 VU reading on the channel meter. Release the BIAS button.

\subsection*{7.12.10 Record Adjustments}

Calibrate Record and Input Calibrate Adjustments.

Apply a 1 kHz signal at +4 dBm . Load a roll of blank tape.

Switch REC CAL to CAL position. Press REPRO button. Press READY button.

Set the transport controls for a fixed reference. Set speed to 15 ips (MED speed for standard machine, HI speed for slow speed machine). Press the PLAY and RECORD buttons.

On the Record Card, adjust CAL REC poten-


Figure 7-9
Record Card Adjustment
tiometer (recording adjustment) until the channel output meter reads 0 VU .

Press INPUT button. On the Record Card, adjust IN CAL potentiometer (monitoring adjustment) until the channel output meter reads 0 VU .

\section*{NOTE:}

Both the CAL REC and the IN CAL potentiometers are shown on the Record Board schematic in Section 5.

The IN CAL adjustment sets the gain of the monitoring channel when it is in INPUT mode. This allows the operator to adjust incoming signal levels before starting to record.

\subsection*{7.12.11 Record Equalization Adjustment}

Apply a 10 kHz signal. Use 0 VU for 15 and 30 ips , -10 VU for all slower speeds. Load a roll of blank tape.

Switch the CAL REC switch to CAL position. Press the REPRO button. Press the READY button.

Set the transport controls for a fixed reference, LO speed, Record mode. On the Record Card adjust the LO \(<\) trimmer.

Reset the transport controls to MED speed, Record mode. On the Record Card adjust the MED \(<\) trimmer.

Reset the transport controls for HI speed, Record mode. On the Record Card, adjust the \(\mathrm{HI}<\) trimmer.

Adjust all channels in the same way.

\subsection*{7.12.12 Reproduce Low Frequency EQ Adjustment}

Connect a variable frequency audio generator to the input. Load a roll of blank tape.

Switch the REPRO CAL switch to CAL position. Press the REPRO button. Press the READY button.

Set the transport controls for a fixed reference, LO speed, Record mode. Watch the channel output meter as you slowly sweep the audio signal from 30 Hz to 100 Hz . Observe the low frequency bumps.

On the Repro Card, adjust the LO speed LO frequency potentiometer \(>\) while sweeping the audio signal through the above range.

Center the bumps about the zero line so that the response over the entire range achieves maximum flatness.

Reset the transport controls to MED speed, Record mode. On the Repro Card, adjust the MED speed LO frequency potentiometer \(>\) while sweeping the audio signal through the range from 30 Hz to 100 Hz .


Figure 7-6 Repro Card Adjustment

Center the bumps about the zero line so that the response over the entire range achieves maximum flatness.

Reset the transport controls to HI speed, Record mode.

On the Repro Card, adjust the HI speed LO frequency potentiometer \(>\) while sweeping the audio signal through the range from 30 Hz to 100 Hz .

Center the bumps about the zero line so that the response over the entire range achieves maximum flatness.

Adjust all channels in the same way.

\subsection*{7.12.13 Record Linearity Adjustment}

NOTE:
This adjustment is not available on all models. If your transport does not have a LIN adjustment, simply skip this procedure.

The intermodulation distortion of tapes varies widely with type of tape and with manufacturing processes. The record linearity adjustment on each Record Card can compensate for a wide variation in characteristics provided the procedure outlined below is followed very closely.

\section*{NOTE:}

Complete all mechanical adjustments and set all bias, record, reproduce levels before starting this procedure.

The relationship between intermodulation distortion and record level is shown below. This is a generalized chart with no attempt to make it conform to a particular type of tape.

Curve " \(A\) " in Figure \(7-10\) shows the distortion vs record level for a typical tape.

Curve " \(B\) " is the distortion vs record level which: can be achieved with correct adjustment of the linearity control.

Curve "C" is the distortion vs record level which may result if improper adjustment procedure is followed.

Set the CAL REPRO switch to CAL position. Set the CAL REC switch to UP position. Press the


Figure 7-10 Intermodulation Distortion Curves

REPRO button. Press the READY button.
Set the transport controls for a fixed reference. Choose the most used speed (if no preference, use 15 ips ). Put into Record mode.

Connect the IM analyzer to the input and the output of the track to be tested. Turn the front panel REC LEVEL potentiometer to \(1 / 4\) scale.

On the Record Card, turn the LIN potentiometer to minimum (counter-clockwise).

Slowly increase the REC. LEVEL (turn the front panel control) until the IM analyzer shows a distortion reading of about \(3 \%\), shown as point \(X\) in Figure 7-10.

Adjust the LIN potentiometer on the Record Card until a minimum distortion reading is obtained. This reading is generally below \(11 / 2 \%\).

A distortion vs record level curve similar to curve " \(B\) " in Fígure 7-10 should result.

Adjust all channels in this way.

\section*{NOTE:}

The audio level must be high enough to produce \(3 \%\) IM distortion before the record linearity control is adjusted. If this adjustment is made at a lower audio level (such as point " \(Y\) " in Figure 7-10) a record level vs distortion response similar to curve " C " in Figure 7-10 may result.

This linearity adjustment should be made whenever a new type of tape is to be used.

Optimum adjustment varies widely with tape characteristics.

\subsection*{7.12.14 Noise Tests}

Connect an ac voltmeter to the channel output with the following weighting network between the output and the meter.

The network in Figure 7-11 will result in an attenuation of 3.0 dB at 30 Hz and at 18 kHz .

Load a roll of blank tape. Head shield MUST be in UP position. Put into STOP mode. The noise reading should be -66 dBm or lower.

Reset the transport controls for a fixed reference, 15 ips speed. Put into PLAY mode. The noise reading should be -64 dBm or lower.

Put the transport into Record mode with no signal input. After recording several minutes of Bias only, Rewind the tape. Put the transport into PLAY mode. The noise reading should be -60 dBm or lower.

Test all channels in the same way.

\subsection*{7.13 Quick Alignment Check}

The following alignment check should be performed prior to each recording session, whenever the brand of tape is changed, or when the equalization standard is switched. This is not intended to replace the maintenance alignments (Sections 7.2 through 7.12), which must be performed periodically. Use this section to verify the performance on a daily basis.


Figure 7-11 Weighting Network


Figure 7-6
Repro Card Adjustment

The following is a list of the minimum equipment necessary to perform an alignment check:

Head Demagnetizer
Cotton Tipped Swabs
Isopropyl Alcohol or equivalent head cleaner MRL Reproduce Alignment Tape (Elevated level, \(250 \mathrm{nWb} / \mathrm{m}\) )
Bulk Erased Tape
Audio Signal Generator Krohn-Hite Model 5800 Oscilloscope Phillips Model 3232 ( \(2 \mathrm{mv} / \mathrm{cm}\) vertical sensitivity, 10 MHz Bandwidth, 0.2 \(\mathrm{msec} / \mathrm{cm}\) Horizontal sweep)
1. Clean and demagnetize the heads.
2. Check the head wrap alignment of the Repro and Record heads.

Select the tape speed which will be used during recording.

Load the reproduce alignment tape corresponding to the selected tape speed.

Place CAL REPRO switch in the CAL position.

Press REPRO and SAFE buttons.
Play the 10 kHz tone on the alignment tape.
Press thumb against supply reel to apply a drag force to the motor. VU meter should dip slightly.

If the VU meter level increases under load, the head wrap requires adjustment. Turn the Repro head wrap adjustment screw to peak the reading on the VU meter.

Press CUE button. Check the record head wrap as above, and adjust as necessary.
3. Check the azimuth alignment of the Repro and Record heads.

Connect the outputs of the two outside tracks to the vertical and horizontal inputs of the oscilloscope. Set the vertical gain equal to the horizontal gain for observing a Lissajous pattern.

Press the REPRO button.
Play the 10 kHz tone on the alignment tape. The oscilloscope Lissajous pattern should be tilted to \(45^{\circ}\).

If necessary, slowly turn the reproduce head azimuth adjustment to tilt the Lissajous pattern to \(45^{\circ}\).

Press CUE button. Check the record head azimuth as above and adjust if necessary.
4. Check the calibrated repro level for 0 VU on the channel meter for each channel.

Press REPRO and SAFE buttons.
Play the 1 kHz level set tone on the alignment tape. Channel VU meter should read 0 VU .


Figure 7-8 Bias Card Adjustment

If necessary, adjust the CAL REP potentiometer on the Repro Card for a 0 VU meter reading.
(On the broadcast deck, adjust the LO LVL or HI LVL potentiometer, depending on the selected tape speed.)
5. Check the cue level for 0 VU on the channel meter for each channel.

Press the CUE button.

Play the 1 kHz level set tone on the alignment tape. Channel VU meter should read 0 VU.

If necessary, adjust the CUE LVL potentiometer on the Repro Card for a 0 VU meter reading.
6. Check the Repro Card high frequency equalization for a 0 VU level on the channel meter for each channel.

Press the REPRO button.

Play the 10 kHz tone on the alignment tape. Channel VU meter should read 0 VU.

If necessary, adjust the LO <, MED < , or \(\mathrm{HI}<\) potentiometer, depending on the selected speed, for a 0 VU meter reading.
7. Check the Bias level for a 0 VU reading on the channel meter for each channel.

Rewind the alignment tape and load a reel of bulk erased tape. Use the same type of tape which will be used for recording.

Connect the signal generator to the channel line input. Adjust output for 10 kHz at +4 dBm .

Place the REPRO CAL and REC CAL switches in the CAL positions.

Press the BIAS button.

Press the READY button.

Record the 10 kHz tone on the tape at the speed which will be used for recording. Channel VU meter should read 0 VU.

If the VU meter does not read 0 VU , perform the following adjustment.

Release the BIAS button.
Press the REPRO button.
Turn the LO, MED, or HI Bias potentiometer, depending on the tape speed selected, several turns counter-clockwise.

Turn the LO, MED, or HI Bias potentiometer clockwise until the VU meter peaks.

Adjust the LO, MED, or HI Bias potentiometer clockwise to lower the VU meter reading from its peak reading by the amount indicated in Section 7.11.

Press the BIAS button.


Figure 7.9 Record Card Adjustment

Adjust the BIAS CAL potentiometer on the Bias Card for a 0 VU reading on the channel meter.

Release the BIAS button.
8. Check the calibrated record level for a 0 VU reading on the channel meter of each channel.

Adjust the signal generator output for 1 kHz at +4 dBm .

Press the REPRO button.
Record the 1 kHz tone on the tape. Channel VU meter should read 0 VU .

If necessary, adjust the CAL REC poten-
tiometer on the Record Card for a 0 VU meter reading.
(On the broadcast deck, adjust the LO LVL or HI LVL potentiometer, depending on the selected tape speed.)
9. Check the input calibration level for a 0 VU reading on the channel meter of each channel.

Press the INPUT button.
Record the 1 kHz tone on the tape. Channel VU meter should read 0 VU .

If necessary, adjust the IN CAL potentiometer on the Record Card for 0 VU meter reading.
10. Check the Record Card high frequency equalization for a 0 VU level on the channel meter of each channel.

Reset the signal generator for a 10 kHz signal at +4 dBm .

Press the REPRO button.
Record the 10 kHz tone on the tape. Channel VU meter should read 0 VU .

If necessary, adjust the Record Card's LO < , MED \(<\), or \(\mathrm{HI} \leqslant\) potentiometer, depending on the selected tape speed, for a 0 VU reading on the channel meter.
11. Check the Repro Card low frequency equalization level for a minimum deviation from 0 VU on each channel meter over the low frequency range.

Record the signal generator output on the tape.

Slowly vary the signal generator frequency between 30 Hz and 100 Hz . Channel meter movement should be centered around 0 VU.

If the meter swing is not centered around 0 VU , adjust the LO \(>\), MED \(>\), or \(\mathrm{HI}>\) potentiometer, depending on the selected tape speed, to center the movement while sweeping the frequency between 30 and 100 Hz .

\subsection*{7.14 Scrape Flutter Filter}

\section*{Test}

The scrape flutter filter on the JH -110 transports requires cleaning and lubricating once every year or every 2000 hours of operation, which ever comes first. Cleaning is also recommended whenever visual inspection reveals oxide, dirt, hairs, etc. on the roller shafts.

\section*{NOTE:}

An ultrasonic cleaner and high speed light grease are required for this procedure. If you do not have an ultrasonic cleaner, the cleaning and lubricating may be handled by a local jeweler or watchmaker.

\section*{If Cleaning Is Necessary}

\section*{Removal:}

Step 1. Remove the head bridge assembly from the transport.

Step 2. Remove the Scrape Flutter Filter Assembly from the head bridge assembly. See figure 7-12.

Remove the \(8-32\) socket head screw securing the scrape filter to the head bridge. Save the screw and the spacer assembly ( \(1 / 2\) " tape only), they will be required for reassembly.


Figure 7-12 Scrape Filter Removal

\section*{Disassembly and Cleaning}

Step 1. Scribe a mark on the brass jewel holder parallel with the center line of the set screw as shown in figure 7-13 to indicate the correct orientation of the holder. Some scrape flutter filters may already have this scribe mark.

Step 2. Remove the roller and shaft assembly. See figure 7-13.
a. Loosen the \(2-56\) set screw that holds the brass jewel holder.
b. Push the roller up to lift the brass jewel holder and remove the roller from the
housing. Do not tip the roller while pushing the jewel holder up or you may damage the pivot pins.
c. Pull the brass jewel holder out of the housing.

Step 3. Place the roller, brass jewel holder, and the housing assembly into an ultrasonic cleaner for cleaning.

\section*{NOTE:}

If any traces of oxide remain after cleaning, polish with jeweler's rouge to remove remaining deposits. After polishing, ultrasonically clean the pieces again.


Figure 7-13 Scrape Filter Disassembly

Step 4. Very lightly lubricate the TIP of each roller PIVOT PIN with high speed light grease. We recommend Beacon 325 precision bearing lubricant.

\section*{Reassembly}

Step 1. Align the scribe mark on the brass jewel holder with the center line of the set screw and slide the brass jewel holder into the housing. Do not seat it all the way down into the housing at this time.

Step 2. Carefully insert the roller pivot pin into the lower jewel bearing.

\section*{CAUTION}

Insert the pivot pin into the center of the jewel bearings. Any side movement or tilt may damage the jewel or break the pivot pin.

Step 3. Center the roller and slide the brass jewel holder down onto the top pivot pin.

Step 4. Position the brass jewel holder to allow a 0.0005 to 0.001 inch vertical play of the roller. Be sure that the scribe mark is aligned with the set screw.

Step 5. Lightly tighten the set screw to secure the brass jewel holder. Recheck the vertical movement. Loosen the set screw and readjust the clearance if necessary. Check to see that the roller spins freely.

\section*{CAUTION}

Overtightening the set screw may distort the jewel holder, crack the jewel, or bind the pivot pin.

\section*{Replacement And Alignment}

Step 1. Replace the spacer on the filter assembly if used ( \(1 / 2^{\prime \prime}\) tape). Reposition the scrape filter assembly under the head bridge and thread in the screw.

Step 2. Replace the head bridge assembly on the transport.

Step 3. Adjust the position of the scrape filter assembly. There are two methods for aligning the position of the scrape filter. The first method given is the preferred one. It, however, requires a wide-band flutter meter. Standard flutter meters use a frequency too low to determine the operation of the scrape flutter filter. If you cannot obtain a wideband flutter meter, use method two.

\section*{Method 1}
a. Connect the wideband flutter meter to the transport as recommended by the manufacturer. Select a bandwidth of at least 5 kHz .
b. Load a roll of erased tape.
c. Place the transport into record mode and adjust the position of the scrape flutter filter to obtain a minimum reading on the meter.
d. Tighten the socket head screw. If the flutter increases after tightening the screw, readjust the position.

\section*{Method 2}
a. Connect an audio oscillator to the line input, select 10 kHz . Monitor the line output.
b. Place the transport in record and monitor the repro.
c. Carefully listen to the 10 kHz repro. You should hear some distortion noise mixed with the 10 kHz tone.
d. Adjust the position of the scrape flutter filter until the roller barely makes contact with the tape, causing the roller to turn.
e. Fine tune the position of the scrape filter by nulling the distortion noise in the 10 kHz tone. Tighten the socket head screw.

\section*{SECTION 8}

\section*{TROUBLESHOOTING}

\subsection*{8.1 Introduction}

Do not attempt to troubleshoot or repair this tape recorder unless you have a thorough understanding of the operation and circuitry. To familiarize yourself with the tape deck's operation, read the manual and use the block diagrams to follow the flow through the schematics. This section of the manual contains a collection of practical information which will aid you in your troubleshooting efforts.

\subsection*{8.2 Control Logic Board}

To aid in the job of isolating trouble on this board, MCI has made available an optional troubleshooting aid - a Logic Annunciator Board.

NOTE:
In use, the Logic Annunciator Board plugs directly into the Control Logic Board. It may be left in this position during operation if desired.

In this section of the manual the following troubleshooting aids are provided:
1. A Truth Table of the Annunciator Board for each control condition.
2. A key to the abbreviations used on the Annunciator Board and the Truth Table.
3. A correlation between each IC and the functions it controls:
A. A list of the malfunctions which occur if each IC is open.
B. A Troubleshooting Chart using the Truth Table as a guide.

LOGIC ANNUNCIATOR BOARD (An optional troubleshooting aid 25B177)

The following list is a key to the abbreviations used on the Annunciator Board. These same abbreviations are used on the Truth Table. The Truth Table shows which of the LEDs on the Annunciator Board should be ON during each mode of operation.

The Logic Annunciator Board and its Truth Table may be used to isolate or localize any trouble which occurs on the Control Logic Board. The Annunciator Board is made to be plugged directly into the Control Logic Board. To use this tool, step through the list of control modes shown on the Truth Table. At each step, several LEDs will turn ON. Check the Truth Table to be sure that each light that should be ON is turned ON, and each light that should be OFF is turned OFF.

ANY circuit which corresponds to the Truth Table may be assumed to be working correctly, and any circuit which does NOT correspond to the Truth Table may be assumed to be malfunctioning.

\section*{JH-110 LOGIC ANNUNCIATOR DEFINITIONS}


NOTES:
These notes apply to both the Definitions and the Truth Table.
1. Only one of the pair (DMVC or RMVC) will be ON at all times to indicate the last control touched. If the optional Remote Control has not been supplied with this machine, the DMVC light should always be ON.
2. The Shield Down command and the Shield Lite command do not apply to the \(\mathrm{JH}-110\) machine. These commands are functional ONLY for the \(\mathrm{JH}-100\) and the JH-114 transports. Either, or both of these lights may turn ON or OFF without affecting the operation of this machine.

JH－110 LOGIC ANNUNCIATOR TRUTH TABLE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline CONTROL MODE & \[
\begin{array}{|l|l}
\hline \underset{\sim}{\underset{\alpha}{4}} \\
\underset{\sim}{4} \\
\underset{\sim}{2} \\
\hline
\end{array}
\] & \[
\left\lvert\, \begin{aligned}
& 0 \\
& \sum_{0}^{0}
\end{aligned}\right.
\] & \[
\sum_{i x}^{0}
\] & \[
\left\lvert\, \begin{aligned}
& 0 \\
& \sum \\
& \sum
\end{aligned}\right.
\] & \[
\begin{gathered}
\stackrel{y}{4} \\
\stackrel{4}{u} \\
\hline
\end{gathered}
\] &  & \[
\begin{aligned}
& 0 \\
& \sum_{0}^{0} \\
& \sum_{1}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ł } \\
& 3 \\
& 3 \\
& \hline x
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& \sum_{0}^{0} \\
& \frac{1}{4}
\end{aligned}
\] & \[
\left\lvert\, \begin{aligned}
& \stackrel{\rightharpoonup}{4} \\
& \frac{1}{4}
\end{aligned}\right.
\] & \[
\begin{aligned}
& \infty \\
& \frac{0}{\infty}
\end{aligned}
\] & \[
\frac{0}{0}
\] & \[
\begin{aligned}
& \underset{\sim}{\underset{\sim}{u}} \\
& \dot{\text { a }}
\end{aligned}
\] & \[
\begin{aligned}
& \stackrel{r}{1} \\
& \frac{\mathrm{a}}{2}
\end{aligned}
\] & \[
\stackrel{\text { 咅 }}{2}
\] & \[
\left|\begin{array}{l}
\stackrel{\rightharpoonup}{x} \\
a
\end{array}\right|
\] & \[
\mid \underset{\sim}{\underset{\sim}{u}}
\] & \[
\] & \[
\stackrel{\stackrel{⿺}{\bar{u}}}{ }
\] & ェ & \[
\begin{aligned}
& \stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{5}} \\
& \stackrel{1}{5}
\end{aligned}
\] & \\
\hline REWIND & ON & & ： & & ON & ON & ON & ON & & & ON & & & & & & & & & ： & & 1 \\
\hline FORWARD & ON & & & & ON & ON & & & ON & ON & ON & & & & & & & & & & & 2 \\
\hline STOP & ON & & & & & & & & & & ON & ON & ON & & & & & & & & & 3 \\
\hline PLAY & ON & & & & & & & & & & ON & & & ON & ON & ON & & & & & & 4 \\
\hline RECORD & ON & & & & & & & & & & ON & & & ON & ON & ON & ON & & & ： & & 5 \\
\hline RECORDMOMENTARY & ON & 䘮 & 嵃 & & & & & & & & ON & & & ON & ON & ON & ON & ON & & 趸 & 屶 & 6 \\
\hline EDIT & & \[
z
\] & & & & & & & & & ON & & ON & & ON & & & & & & 2 & 7 \\
\hline MVC TOUCHED & & ¢ & 5 & ON & ON & & & & & & ON & & & & & & & & & & ¢ & 8 \\
\hline MVC LATCHED & ON & & & ON & ON & ON & & & & & ON & & & & & & & & & & & 9 \\
\hline AUTOLOCATOR & ON & & & & ON & ON & & ON & & ON & ON & & & & & & & & & & & 10 \\
\hline NO TAPE & & & & & & & & & & & & & & & & & & & & & & 11 \\
\hline MANUAL LIFTER OUT & & & & & & & & & & & & & & & & & & & & & & 12 \\
\hline & A & B & c & D & E & F & G & H & 1 & J & K & L & M & N & 0 & P & Q & R & S & T & U & \\
\hline
\end{tabular}

\section*{ICs AND THEIR FUNCTIONS}

The interconnecting of the logic chips used in the Control Logic Board makes it impossible to ascribe a single function to an IC，or conversely to ascribe a single IC to a function．

The following list is a generalization obtained by removing each IC in turn from its socket and observing the effects on the control functions． This list is to be used as a guide ONLY．

NOTES ON FUNCTIONS WHICH DO NOT IC OPERATE CORRECTLY WHEN THE IC IS NO．REMOVED FROM ITS SOCKET．

\footnotetext{
1 RMVC－DMVC S
2 REWIND function does not work．
3 FWD function does not work．
}

4 PLAY－RECORD functions do not work．
5 Transport will obey all control buttons ex－ cept STOP．

7 Transport goes into EDIT mode instead of STOP．
8 MVC functions do not work．
9 RWD mode cannot be turned OFF．
10 FWD mode cannot be turned OFF．
11 Transport goes into PLAY mode with BRAKES ON（reels STOP）．
Transport goes into PLAY mode with NO TAKEUP TENSION（STOP button has been pushed）．
（Controls shield functions not used on this machine．）
（Controls shield functions not used on this machine．）
MVC does not turn OFF．PLAY and

RECORD do not work.

TROUBLESHOOTING PROCEDURE - (Using the logic annunciator and its truth table)

Put the transport into each Control mode named on the Truth Table. From one to eight LEDs will light. Check that each light called for by the chart. is ON, and that NO lights are ON EXCEPT those shown on the chart.

If any ON light is OFF, check its coordinates on the chart. (See the bottom line and the column to the far right.) The coordinates of the lights are us-
ed as the key to the table on the next page. This table identifies the schematic numbers of the ICs which may be involved in any malfunction. As a general rule, the IC numbers given first on the list are more likely to be causing the trouble.

\section*{SPECIAL NOTE:}

In preparation of these lists, we assumed that the outputs of the TTL chips were the potential source of trouble. Therefore we did not include the IC numbers whose inputs only have contact with the "information path." A shorted input of some logic chip not on the list may cause a malfunction. However, TTL chips rarely develop "input circuit" trouble after their initial burn-in period.

When a malfunction is suspected, the Annunciator Board should be used to check the entire Truth Table. Note which lights are wrong in each mode of operation. Spend a few minutes in crosscorrelating the information gathered from the Truth Table and from the Troubleshooting Chart. By using this process to eliminate all but a very few of the ICs, you should be able to pinpoint the trouble very quickly.
\begin{tabular}{|c|c|c|c|}
\hline LITE NO. & SCHEMATIC NO. OF ICs WHICH MAY CAUSE TROUBLE & \begin{tabular}{l}
LITE \\
NO.
\end{tabular} & SCHEMATIC NO. OF ICs WHICH may Cause trouble \\
\hline A1 & \[
\begin{aligned}
& 16,8,11,4,18,12,7,6,20,17,9,2, \\
& 10,3
\end{aligned}
\] & \[
\begin{aligned}
& \text { K2 } \\
& \text { K3 }
\end{aligned}
\] & \begin{tabular}{l}
(Same as K1) \\
(Same as K1)
\end{tabular} \\
\hline A2 & (Same as A1) & K4 & (Same as K1) \\
\hline A3 & (Same as A1) & K5 & (Same as K1) \\
\hline A4 & (Same as A1) & K6 & (Same as K1) \\
\hline A5 & (Same as A1) & K7 & (Same as K1) \\
\hline A6 & (Same as A1) & K8 & (Same as K1) \\
\hline A9 & (Same as A1) & K9 & (Same as K1) \\
\hline A10 & (Same as A1) & L3 & 5 \\
\hline B1-B12 & See NOTE 1 - Check IC 1 & & \\
\hline C1-C12 & See NOTE 1 - Check IC 1 & M3 & \[
\begin{aligned}
& 19,20,21,18,12,17,8,15,5,7,10 \\
& 3,9,2,6,16,11,4
\end{aligned}
\] \\
\hline & & M7 & (Same as M3) \\
\hline D8 & \[
\begin{aligned}
& 8,16,15,5,18,12,20,7,17,11,4 \text {, } \\
& 10,3,9,2
\end{aligned}
\] & N4 & 11, 4, 5, 16, 8, 15, 10, 3, 9, 2 \\
\hline D9 & (Same as D8) & N5 & (Same as N4) \\
\hline E1 & \[
\begin{aligned}
& 17,8,9,2,5,11,4,10,3,16,15,12 \\
& 20,7,6,18
\end{aligned}
\] & N6 & (Same as N4)
\(12,20,7,6,11,4,16,8,15,9,2,10\), \\
\hline E2 & (Same as E1) & & \\
\hline E8 & (Same as E1) & O5 & (Same as O4) \\
\hline E9 & (Same as E1) & 06 & (Same as O4) \\
\hline E10 & (Same as E1) & 07 & (Same as O4) \\
\hline F1 & \[
\begin{aligned}
& 17,16,9,2,10,3,18,8,15,5,12,7 \text {, } \\
& 6,20
\end{aligned}
\] & P4 & \[
\begin{aligned}
& 18,12,20,7,6,11,4,16,8,15,5,17 \\
& 9,2,10,3
\end{aligned}
\] \\
\hline F2 & & P5 & (Same as P4) \\
\hline F9 & (Same as F1) & P6 & (Same as P4) \\
\hline F10 & (Same as F1) & & \\
\hline G1 & 9, 2, 5, 11, 4, 10, 3 & Q5 & \[
\begin{aligned}
& 6,5,18,12,7,11,4,16,17,8,15,9 \text {, } \\
& 2,10,3
\end{aligned}
\] \\
\hline & & Q6 & (Same as Q5) \\
\hline H1 & 19, 9, 2, 5, 11, 4, 10, 3 & & \\
\hline H10 & (Same as H1) & R6 & \[
\begin{aligned}
& 7,6,5,18,12,20,11,4,16,8,17,15 \\
& 9,2,10,3
\end{aligned}
\] \\
\hline 12 & 10, 3, 5, 11, 4, 9, 2 & & \\
\hline J2 & 19, 10, 3, 5, 11, 4, 9, 2 & S7 & \[
\begin{aligned}
& 7,6,17,16,9,2,18,8,15,5,12,10 \\
& 3,11,4
\end{aligned}
\] \\
\hline K1 & \[
\begin{aligned}
& 19,5,7,6,17,16,10,3,9,2,18,8,15 \\
& 12,11,4,20
\end{aligned}
\] & & \\
\hline
\end{tabular}

\subsection*{8.3 Analog Torque Board}

This board controls the torque generated in the two reel motors. A functional description, a Block Diagram and Schematic are included in Section 3 of this manual. Periodic adjustments are described in Section 7.

The outputs of the Analog Torque Board go to the Power Supply Board where the Motor Driver circuits are located. Information on the Power Supply Board may be found in Section 6.
The troubleshooting aids for this board are divided into (1) a Quick Reference Chart, (2) a Voltage Chart, and (3) a Loss of Function Chart.

\section*{QUICK REFERENCE CHART}

PROBLEM
POSSIBLE CURE

Tape does not move in PLAY mode.
Reel motors do not idle correctly. No takeup tension (tape spills). Idling speed much too high in either direction.

PLAY TENSION WRONG. Tape spills in PLAY mode. No supply reel tension in PLAY mode.

FWD mode does not work, or FWD speed is very slow.

RWD mode does not work, or RWD speed is very slow.

Tape tensions do not vary with mode change.

\section*{LOSS OF FUNCTION CHART}

The following chart is arranged with the most significant functions at the left and the least significant functions on the right. If you observe more than one function to be missing (or always "ON"), investigate first the function listed to the left.

Operate the machine in all modes and match the malfunctions to the chart. Check or replace the components listed in that section of the chart.

HINT:
The two torque motor systems have many identical components. Thus components that are suspect can be changed from side to side to help
in locating the trouble. It is best NOT to change trim pot adjustments until you have substituted known good components in the affected circuit.

\section*{NOTE:}
1. Trim pots R12 \& R36 are used to set the OFF-SET NULL to minimum voltage. (Never more than \(\pm 0.3 \mathrm{v} \mathrm{DC}\) ).

Trim post R18 \& R111 are used to set the IDLE adjustment. Tape creep is a sign of misadjustment.

For adjustment procedure see the maintenance section of this manual. This adjustment must be correct before proceeding to other columns of this chart.
2. Soft EDIT is checked with tape loaded on the machine in STOP mode. Force the Supply reel and the Takeup reel in the reverse direction (opposite to their torque). Note that the motors do not fight your efforts, but merely wind up the slack tape.
3. A signal voltage proportional-to the speed of the capstan is received from the Phase Locked Loop Board. This signal is used as the divisor in the computation of the

Torque. If this signal is missing, the computation is invalid.
4. All components are located on the Analog Torque Board except those identified by reference to Note 4.

The Motor Driver Amplifiers are located on the Power Supply Board. Refer to Section 6.

\section*{LOSS OF FUNCTION CHART}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & All Commands & Fast Modes & MVC & Auto Locate & Stop (Idle) & Soft Edit (Note 2) & Play Accel. Command & Play Tension Problems & Torque Limit Function & Capstan Problems (Note 3) \\
\hline \begin{tabular}{l}
SUPPLY \\
MOTOR
\end{tabular} & Power Supply \& Motor Drive board Note 4 IC 28 & \begin{tabular}{l}
IC 15 \\
IC 16 \\
IC 18 \\
IC 19 \\
IC 28
\end{tabular} & & & \[
\begin{aligned}
& \text { IC } 4 \\
& \text { IC } 5 \\
& \text { IC } 15 \\
& \text { IC } 16 \\
& \text { Note 1 } \\
& \text { R12 } \\
& \text { R18 }
\end{aligned}
\] & & & \begin{tabular}{l}
IC 1 \\
IC 2 \\
IC 3 \\
IC 15 \\
IC 16 \\
Note 1
\end{tabular} & & \\
\hline BOTH MOTORS & \[
\begin{gathered}
+15 v \\
-15 \\
+34 v
\end{gathered}
\] & \[
\begin{gathered}
+15 \mathrm{v} \\
-15 \\
\text { IC } 20 \\
\text { IC } 21
\end{gathered}
\] & \[
\begin{aligned}
& \text { IC } 18 \\
& \text { IC } 19
\end{aligned}
\] & \[
\begin{aligned}
& \text { IC } 13 \\
& \text { IC } 14 \\
& \text { IC } 16 \\
& \text { IC } 17
\end{aligned}
\] & & \begin{tabular}{l}
IC 13 \\
IC 14 \\
IC 29 \\
Q2
\end{tabular} & \[
\begin{aligned}
& \text { IC } 22 \\
& \text { IC } 23
\end{aligned}
\] & \[
\begin{aligned}
& \text { IC } 6 \\
& \text { IC } 13 \\
& \text { IC } 14
\end{aligned}
\] & Q1 & \[
\begin{gathered}
\text { PLL bd. } \\
\text { IC } 9 \\
\text { IC } 10 \\
\text { Q2 } \\
\text { Note } 4 \\
\text { IC } 6
\end{gathered}
\] \\
\hline TAKEUP MOTOR & \begin{tabular}{l}
Power Supply \& motor drive board \\
Note 4 \\
IC 26 IC 27
\end{tabular} & \[
\begin{aligned}
& \text { IC } 18 \\
& \text { IC } 19 \\
& \text { IC } 24 \\
& \text { IC } 25 \\
& \text { IC } 26 \\
& \text { IC } 27
\end{aligned}
\] & & & \begin{tabular}{l}
IC 10 \\
IC 11 \\
IC 24 \\
IC 25 \\
Note 1 R36
R111
\end{tabular} & & & \begin{tabular}{l}
IC 7 \\
IC 8 \\
IC 9 \\
IC 12 \\
IC 24 \\
IC 25 \\
Note 1 \\
R41
\end{tabular} & & . \\
\hline
\end{tabular}

\subsection*{8.4 Power Supply Motor Driver Board}

This board contains the drivers for the Supply Reel Motor, the Takeup Reel Motor, and the regulator circuit which supplies power for the lamps, the relays, and the capstan motor.

The motor drivers are constant current amplifiers
which maintain a fixed current through the motor winding, regardless of the winding resistance or the speed of the motor. The mode command signals fed to the non-inverting input of the opamp control the amount of current to be fed to the motor.

Since the purpose of the circuit is to deliver a constant current to the motor winding, the voltage
present at the negative end of the winding (and at the collectors of Q1, 3, 9, 10) will vary widely. Other voltages vary only slightly in a circuit which is working normally:
\[
\begin{aligned}
\text { Q1, Q3 - Base } & \approx 1.7 \mathrm{vDC} \\
\text { Emitter } & \approx .7 \mathrm{vDC} \\
\text { Q9, Q10 - Base } & \approx .7 \mathrm{vDC} \\
\text { Emitter } & \approx .1 \mathrm{vDC}
\end{aligned}
\]

Voltages at the collectors of the above transistors will vary widely.

IC 1 , IC 2 - Set inputs to +1.5 v DC (read at input to card)
\(\operatorname{Pin} 3 \approx+.1 v D C\)
\(\operatorname{Pin} 6 \approx+1.2 v \mathrm{DC}\)

LAMP, RELAY, AND CAPSTAN MOTOR SUPPLY
The three transistors in this section provide a
regulated output for the above circuits.
Q5 is the Series Regulator. Collector \(\approx 35 \mathrm{v}\) DC
Base \(\approx 24 v\) DC
Emitter \(\approx 23.4 v D C\)
Q7 and Q8 are Shunt type current limiters. These transistors are turned OFF unless there is excess current.

\subsection*{8.5 Phase Locked Loop Board.}

This board controls the capstan motor. Therefore, any problems with the tape speed in play or record modes are likely to be located on this board.

We have divided the troubleshooting information on this circuit into (1) a Quick Reference chart, and (2) a chart of the Wave Forms found on the board. If the Quick Reference chart does not solve your problem, it will be necessary to troubleshoot this circuit with an oscilloscope, using the Wave Form chart.

\section*{QUICK REFERENCE CHART}

\section*{PROBLEM}

If the capstan motor continues to run in STOP mode.

If the capstan motor runs away when in PLAY mode.

If the capstan motor has a very sluggish start-up.

If the capstan motor works normally in Fixed Reference mode, but will not work in Variable mode.

If the capstan motor works normally in Variable mode but will not work in Fixed Reference mode.

If the capstan motor works properly in High Speed but not in Low Speed.

If the capstan motor does not run.

POSSIBLE CURE
Replace IC 13.
A. Check for broken wires on Capstan Tach photocells.
B. Replace IC 1 on TACH Board.
C. Check tach connection to Phase Locked Loop Board.

Replace IC 15, it may be oscillating.

Check and/or replace IC 4, IC 0.

Check and/or replace IC 1, IC 2, IC 3.

Check and/or replace IC 6.

Check and/or replace IC nos. 7, 8, 11, 12, 13, 14 and Q3, Q4.

If the capstan motor runs with an uneven or jerky motion.

If the capstan motor does not operate in VAR reference position.

If the capstan motor does not follow an External signal when in EXT reference position.

Adjust the Phase Locked Loop gain control.

Check and/or replace IC 16 (switching ckt.), IC 5 (VCO), and IC 4 (DC buffer).

Check and/or replace IC 16 (switching ckt.), and IC 18 (retriggerable one-shot).

This circuit is a closed loop amplifier, and each signal wave form and voltage depends on the previous signal - all the way around the circle. Therefore it is difficult to isolate the point where the trouble starts. Your oscilloscope MUST be capable of measuring the duration and the amplitude of the pulses with reasonable accuracy.

Before starting the wave form analysis, check the supply voltages:
\[
\begin{aligned}
& \pm 5 \mathrm{v} \text { DC across CR7, CR8 } \\
& +22 \mathrm{v} \text { DC at P47 Pin 9, } 10 \\
& \pm 15 \mathrm{v} \text { DC at P45 Pin 1, 2, to gnd. }
\end{aligned}
\]

\section*{WAVE FORM CHART}

Test conditions: Fixed reference, 15 ips , PLAY mode.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{TEST POINT} & \multicolumn{3}{|c|}{PULSE DESCRIPTION} & \multirow[t]{2}{*}{PEAK TO-PEAK VOLTAGE} \\
\hline & \(\Gamma\) & L & DURATION & \\
\hline IC 1, Pin 6 & Triangular & Triangular & \(10 \mu \mathrm{Sec}\). & 4 \\
\hline IC 2, Pin 6 & \(5 \mu \mathrm{Sec}\). & \(5 \mu \mathrm{Sec}\). & \(10 \mu \mathrm{Sec}\). & 11.5 \\
\hline TP 2 & \(50 \mu \mathrm{Sec}\). & \(50 \mu \mathrm{Sec}\). & \(100 \mu \mathrm{Sec}\). & 4 \\
\hline IC 3, Pin 12 & \(50 \mu \mathrm{Sec}\). & \(50 \mu \mathrm{Sec}\). & \(100 \mu \mathrm{Sec}\). & 4 \\
\hline IC 6, Pin 1 & \(10 \mu \mathrm{Sec}\). & \(40 \mu \mathrm{Sec}\). & \(50 \mu \mathrm{Sec}\). & 4 \\
\hline IC 6, Pin 6 & \(50 \mu \mathrm{Sec}\). & \(50 \mu \mathrm{Sec}\). & \(100 \mu \mathrm{Sec}\). & 4 \\
\hline IC 6, Pin 7 & \(100 \mu \mathrm{Sec}\). & \(100 \mu \mathrm{Sec}\). & \(200 \mu \mathrm{Sec}\). & 4 \\
\hline IC 15, Pin 3 & \(20 \mu \mathrm{Sec}\). & \(80 \mu \mathrm{Sec}\). & \(100 \mu \mathrm{Sec}\). & 4 \\
\hline TP 1 & \(20 \mu \mathrm{Sec}\). & \(80 \mu \mathrm{Sec}\). & \(100 \mu\) Sec: - & \[
6
\] \\
\hline IC 8, Pin 8 & *. \(2 \mu \mathrm{Sec}\). & \(99.8 \mu \mathrm{Sec}\). & \(100 \mu \mathrm{Sec}\). & 4 \\
\hline IC 8, Pin 9 & *. \(2 \mu \mathrm{Sec}\). & \(99.8 \mu \mathrm{Sec}\). & \(100 \mu \mathrm{Sec}\). & 4 \\
\hline TP 3 (Adj. R42 for) & \(30 \mu \mathrm{Sec}\). & \(70 \mu \mathrm{Sec}\). & \(100 \mu \mathrm{Sec}\). & 4 \\
\hline
\end{tabular}
* These pulses will be visible ONLY on a high speed scope ( 30 mHz or better).

There are presently two versions of the low speed option to the JH-110B. One version uses jumpers on the Phase Locked Loop Board to lower the tape speed. These jumpers select an additional flipflop to divide the reference frequencies by two. The other version uses a \(1 / 4\) inch capstan shaft to lower the tape speed.

Refer to notes 9, 10, and 13 on the Phase Locked Loop Board schematic for jumper placement.

\subsection*{8.6 Audio Electronics}

Each channel has a mother board and three plugin boards which are identical and interchangeable. The schematics for these boards have both DC and SIGNAL voltage notations at important points.

The first step in isolating trouble within a channel should be to substitute plug-in boards from a working channel or from your Spare Parts Kit. This should verify your analysis of where the trouble is located.

Standard progressive isolation procedures, using
the information available on the schematics, should easily locate the defective component.

NOTE:
The P1086E transistors used on all three of these boards are depletion model " P " channel Field Effect Transistors. They are used as SWITCHES and take the place of the many small relays used in other professional machines.

The Field Effect Transistors used on the Bias Card are carefully selected for an exact pinch-off voltage. Punch in/punch out performance of the machine is directly affected by the pinch-off voltage of these FETs. If replacements are needed, secure them from MCI Customer Service.

These FETs are turned OFF by a +18 v DC control voltage. They turn ON when the control voltage goes to 0 v .

The Audio Block Diagrams (Figures 5-2 and 5-3) will prove very helpful. They show the location of each function and help to tie all of the schematics together.

\section*{REPRO CARD}

\section*{PROBLEM}
1. Input mode only
2. Cue mode only
3. Repro mode only
4. Output section
5. Meters pin momentarily when machine is turned ON after being off for more than 30 seconds.
6. No response below 2 kHz
7. No audio (other than output stage)
8. Asymetrical clipping
9. No low frequency adjust or control interaction
10. No high frequency adjust or control interaction
11. Front end not functioning or high offset.
12. Card unusually noisy
13. NAB/IEC low end switching not functional
14. NAB/IEC switching, not tracking
15. No high end response

\section*{POSSIBLE CAUSE}

Q13 and support components
Q12 and support components
Q11 and support components
IC6 and support components
Q14 and support components C44, C43 or C11 leaky, R15 open, IC2 high offset, front end high offset.

IC4 and support components
IC5 and support components
Same as 5
Q4, Q5, Q6, Q7, and support components

Q8, Q9, support components, FET control lines

Q3A, Q3B, IC1, IC2, IC3 and support components

Q3A, Q3B, IC1, IC2, IC3, IC4, or FETs
Q7, S1, or R24
Not aligned correctly. R34, R33, R35, R37 out of tolerance, wrong heads installed.

Q8, Q9, Q10, and support components, FET controls, S1

\section*{RECORD CARD}

\section*{PROBLEM}
1. No output
2. No high end
3. Response not flat on one speed
4. No low end
5. Linearity not functional
6. Response not flat at all speeds
7. NAB/IEC switching not tracking
8. NAB/IEC low end switching not functional
9. Too much low end at 30 ips (AES EQ) when in NAB, but correct when switched to IEC

POSSIBLE CAUSE

IC4, IC3, IC1, and support components
IC2 and support components, Q1, Q2, Q3 and control lines, R43

Differentiator FET summing resistors and capacitors, FETs, FET feedback components

R41

R43, CR1, CR2
Repro not aligned correctly, wrong overbias

Repro not aligned correctly, wrong overbias, wrong heads installed

Q4 and support components, C25 (NAB), C25 and C4 (IEC)

CR3 open, Q4 not conducting.

\subsection*{8.7 RTZ III}

Refer to Schematics 25D609, 25E611, and 25E625.

WARNING
Any damage to P.C. Boards caused by unauthorized repair will vojd MiCl Warranty. Contact your MCI dealer for repair, if you are uncertain of the problems.

Instruments needed for testing include:
A. Multimeter with \(3 \%\) full scale accuracy
B. An oscilloscope with a minimum 10 MHz bandwidth.

\section*{TROUBLESHOOTING GUIDE}

\section*{TROUBLESHOOTING TABLE}
\begin{tabular}{ll} 
SYMPTOM & CAUSE \\
No Display & \begin{tabular}{l} 
Test Power Supply Input checkout ribbon cable from \\
Processor Board to Display Board.
\end{tabular} \\
Complete Non-Operation & \begin{tabular}{l} 
IC12 (8085A Microprocessor) - If the test points differ \\
from normal value as outlined on the following page, \\
replace the IC's associated with that line. A many func- \\
tioned failure should be cause for replacing the \\
microprocessor.
\end{tabular} \\
& \begin{tabular}{l} 
IC11 (EPROM) defective on Processor Board. Check \\
associated MAN3620 and/or associated 7447.
\end{tabular} \\
Bad Display Digit(s) & \begin{tabular}{l} 
Check roller guide pulses input to IC9. IC9 defective, \\
clamping diodes CR5, CR6 defective. All on Processor \\
Board.
\end{tabular} \\
Tape Position Display Defective
\end{tabular}

IC16 on Plug On Board

\section*{CRITICAL CIRCUIT ELEMENTS, VOLTAGES AND WAVEFORMS}

Turn power on. The RTZ III should display 0000 and be in normal operational condition. (All measurements are to chassis ground.)

PROCESSOR BOARD \(\cdot(2500 E 0611-00)\)
\[
\begin{array}{ll}
\text { IC11 Pin 19 } & +12 \mathrm{VDC} \text { Regulated } \\
\text { IC11 Pin 21 } & -5 \mathrm{VDC} \text { Regulated } \\
\text { IC11 Pin 24 } & +5 \mathrm{VDC} \text { Regulated } \\
\text { Q3 Emitter \& Collector } & +12 \mathrm{VDC} \text { Regulated } \\
\text { Q4 Emitter \& Collector } & +5 \text { VDC Regulated }
\end{array}
\]

NOTE:
Q3 and Q4 operate cool. If either is hot to the touch, replace.
IC12 (8085A Microprocessor) Measurements are to ground.
\begin{tabular}{lll} 
PIN 1 & X1 & Approximately 6 MHz SINEWAVE \\
PIN 2 & X2 & Logic 0 0.2v \\
PIN 3 & RESET & NO MEANNING connected to J2 \\
PIN 4 & SOD & NO MEANNING connected to J2 \\
PIN 5 & SID & TERO (GND) \\
PIN 6 & TRAP & Logic 0 0.2v \\
PIN 7 & RST 7.5 & Logic 0 0.2v \\
PIN 8 & RST 6.5 & Logic 0 0.2v \\
PIN 9 & RST 5.5 & ZERO (GND) \\
PIN 10 & INTR & Logic 1 3.0v \\
PIN 11 & INTA & irregular digital pulses \\
PIN 12 to 19 & & SQUAREWAVE 3 MHz, 3V \\
PIN 21-25 & & \\
PIN 25 to 28 & & irregular pulses \\
PIN 26 to \\
PIN 30,31,32,34 & & RESET IN \\
PIN 36 & & cone checked if Pin 3 is held @ 0.2V or 3V \\
& & Cin 36. \\
PIN 37 & CLK & SQUAREWAVE 3 MHz@ 3V \\
PIN 39 & HOLD & ZERO (GND)
\end{tabular}

IC6 contains the live memory ( 256 bytes of RAM) used by the program. IC6 is associated with the display control, the D/A (IC4) speed control and a timer (TVI).

IC8 and IC9 are request latches. Roller guide and capstan pulses are fed into them. IC8 and IC9 are cleared by IC15 (8255A). EPROM (IC11) controls this sequence.

\section*{SECTION 9 SPARE PARTS KITS}

MCI offers four spare parts kits for the \(\mathrm{JH}-110 \mathrm{~B}\) to support your particular level of maintenance. This section lists the contents of each kit. These kits are available through your dealer or through MCl's Customer Service Department. When ordering a kit, specify the model and all options included.

Spare parts kit number one is a collection of components that are most often used in printed circuit board level repair. Most of these components are difficult to obtain locally. Common components that are easily obtainable are not included in this kit.

Spares kit number two contains transport lamps, switches, and relays which are all high use items.

Spares kit number three consists of replacement circuit boards and assemblies. This kit is necessary for facilities performing board swapping maintenance or responding to emergency repair situations.

Spares kit number four contains replacement circuit boards and assemblies as does kit number three. This kit is intended to support more extensive maintenance activities.

\title{
SPARE PARTS LIST NUMBER 1 \\ Active Spares Kit
}

Ordering Number: JH110B-S-KIT-AA
\begin{tabular}{cl} 
Quantity & Description \\
6 & 2003P Op Amp \\
6 & P1086RR FET \\
2 & LM394H Transistor \\
2 & AD532J Mult-divider \\
3 & SP-7000-0127-01 Sel. Transistor \\
2 & 2N2270 Transistor \\
2 & 2N5783 Transistor \\
2 & 2N3053 Transistor \\
1 & 2N4249 Transistor \\
4 & 2N3055-H Transistor \\
1 & LM309KC-5 5v Regulator \\
1 & LM340KC-18 18v Regulator \\
1 & LM320KC-18 -18v Regulator \\
1 & LM340KC-15 15v Regulator \\
1 & LM320KC-15 -15v Regulator \\
4 & 1N4004J4 Diode \\
1 & 1N5252B-24V 24v Zener \\
1 & 1N5231B-5.1V 5.1v Zener \\
2 & 1N34 Diode \\
2 & 1N914 Diode \\
1 & 1N5241-11V 11v Zener \\
2 & 1N5245B-15V 15v Zener \\
1 & ICTE-5-5V Surgister \\
1 & 1N5243-13V 13v Zener \\
1 & 7447BCD 7 Segment Decoder \\
1 & 0.15-OHM 10\%-3WW Resistor \\
2 & IH5011 Analog Switch \\
1 & OPB-125 Photo Cell \\
1 & 4114R-001-104 100k Resistor DIP \\
1 & 4114R-001-181 180k Resistor DIP \\
2 & 2N3906 Transistor \\
1 & 78M12CP 12v Regulator \\
1 & LM324 Quad Op Amp \\
1 & MJE-3055 Transistor \\
1 & MAN-3620 LED Display \\
&
\end{tabular}
\begin{tabular}{cl} 
Quantity & Description \\
& \\
1 & 74C912 Display Control \\
1 & 7400 Quad 2-NAND \\
1 & 7402 Quad 2-NOR \\
1 & 7408 Quad 2-AND \\
1 & 7404 Hex Inverter \\
1 & 7410 Trip 3-NAND \\
1 & 7420 Dual 4-NAND \\
1 & 7432 Quad 2-OR \\
1 & 74C00N Quad 2-NAND \\
4 & 741CP Op Amp \\
1 & 75454 Driver IC \\
1 & 7426 Quad 2-NAND HV \\
1 & 74122 One Shot \\
1 & 7427 Trip 3-NOR \\
1 & 7493 Counter \\
1 & 74121 One Shot \\
1 & 74123 One Shot \\
1 & 7495 4-bit Parallel \\
1 & 7490 Decade Counter \\
2 & TL081CP Op Amp \\
1 & NE566 Function Generator \\
2 & 0.180 OHM 10\%-2WW Resistor \\
1 & TIL143 Tape Sensor \\
1 & 2:5-9:0PF Trim Cap \\
1 & 1N5246-16V 16v Zener \\
1 & PCA2700-0051 Repro Extender \\
1 & PCA2700-0052 Record Extender \\
1 & PCA2700-0053 Bias Extender \\
2 & LM350K 22v Regulator \\
2 & MDL--4.0A-250V Fuse \\
2 & MDL--2.0A-250V Fuse \\
6 & 2003M Op Amp \\
1 & 74LS74 Dual Flip-Flop \\
2 & LF347N Quad Bifet Op Amp \\
&
\end{tabular}

\title{
SPARE PARTS LIST NUMBER 2 Switch Spares Kit
}

\section*{Ordering Numbers: JH110B-S-KIT-AB (Non-BX) \\ JH110B-S-KIT-AT (JH-110BX)}
\begin{tabular}{clcl} 
Quantity & Description & Quantity & Description \\
& & & \\
1 & HC4E-24VDC Relay & \(1^{1}\) & SP-7000-2305-14 Switch \\
\(1^{1}\) & K4E24V-9 Relay & 2 & MST-105D Switch \\
8 & SP-7000-0550-00 Lamp & 1 & SP-7100-2308-07 Switch \\
4 & \(01-903\) Lamp & \(1^{1}\) & SP-7100-2308-06 Switch \\
1 & 01-121 Switch & \(1^{1}\) & JBT-2223L Switch \\
1 & 01-151 Switch & \(1^{1}\) & SP-7000-2305-12 Switch \\
2 & L41-2-0-000A Red LED & & \\
2 & L41-1-0-000A Amber LED & & \\
\(2^{1}\) & L41-4-0-000A Green LED & & \\
& & & \\
&
\end{tabular}

\section*{SPARE PARTS LIST NUMBER 3 \\ PCA Spares Kit}

> Ordering Numbers: JH110B-S-KIT-AC (Standard speed two track) JH110B-S-KIT-AD (Low speed option two track) JH110B-S-KIT-AE (Standard speed four track) JH110B-S-KIT-AF (Low speed option four track) JH110B-S-KIT-AG (JH-110BC) JH110B-S-KIT-AH (JH-110M) JH110B-S-KIT-AU (JH-110BX)

\section*{Quantity Description}
\begin{tabular}{lll}
1 & PCA2500-0027-00 & \\
1 & PCA2500-0600-00 & Control Logic Board \\
1 & PCA2600-0001-23 Locked Loop Board \\
1 & PCA2500-0042-00 & Analog Torque Board \\
1 & Solenoid Driver Board \\
1 & PCA2700-0913-00 & Reproduce Board \\
1 & PCA2700-0916-00 & I/O Board \\
1 & PCA2700-0914-00 & Record Board \\
1 & PCA2700-0055-01 & Bias Board \\
1 & PCA2700-0005-01 & Strip Board with Oscillator \\
1 & MCA2500-0194-40 & Power Supply Chimney \\
1 & 52-5488 & VU Meter \\
1 & AS-6000-0237-21 & Pinch Roller \\
1 & SP-7000-0196-01 & DC Tach Generator \\
\(1^{1}\) & PCA2700-0915-00 & Front Panel EQ Board \\
\(1^{1}\) & PCA2700-0927-00 & Lo Freq EQ Pot Assy \\
\(1^{1}\) & PCA2700-0928-00 & Hi Freq. EQ Pot Assy \\
1 & PCA2500-0416-00 & Lamp Driver/Interface Board \\
\(1^{2}\) & PCA2700-0048-00 & Strip Board without Oscillator \\
\(1^{3}\) & SP-7000-0193-00 & Transformer
\end{tabular}

Contents of kit varies depending upon particular model and options. Be sure to specify model number and all options installed when ordering kits.

\footnotetext{
\({ }^{1}\) Included in Kit AH only
\({ }^{2}\) Included in Kits AE, AF, and AH only
\({ }^{3}\) Included in Kit AG only
}

\section*{SPARE PARTS KIT NUMBER 4 Optional parts for heavy support}

> Ordering numbers: JH110B-S-KIT-AI (Standard speed \(1 / 4\) inch) JH110B-S-KIT-AJ (Low speed option \(1 / 4\) inch) JH110B-S-KIT-AK (Standard speed \(1 / 2\) inch) JH110B-S-KIT-AL (Low speed option \(1 / 2\) inch) JH110B-S-KIT-AM (JH-110BC and BX) JH110B-S-KIT-AN (JH-110M standard speed \(1 / 4\) inch) JH110B-S-KIT-AO (JH-110M low speed option \(1 / 4 \mathrm{inch}\) ) JH110B-S-KIT-AP (JH-110M standard speed \(1 / 2\) inch) JH110B-S-KIT-AQ (JH-110M low speed option \(1 / 2\) inch) JH110B-S-KIT-AR (1 inch)

\section*{Quantity Description}
\begin{tabular}{lll}
1 & PCA2500-0609 & RTZ III Display Board \\
1 & PCA2500-0639 & RTZ III Processor Board \\
1 & ASA2500-0129 & Capstan Motor Assembly \\
1 & AS-7100-1002 & Reel Motor Assembly \\
2 & 42C24DCAU & Lifter or Brake Soleniod \\
1 & MC-2500-0104 & Pinch Roller Solenoid \\
1 & 23X30B-4-QZ & Reference Switch \\
\(1^{1}\) & 14X30B-2-QZ & Speed Switch \\
\(1^{2}\) & 14X30B-3-QZ & Speed Switch \\
1 & 3540S-1-103 & Vari Speed Potentiometer \\
\(1^{3}\) & MCA2600-0316 \(1 / 4\) ", & Roller Guide Tach \\
\(1^{4}\) & MCA2600-0317 \(1 / \mathbf{L}^{\prime \prime}\) & Roller Guide Tach \\
\(1^{5}\) & MC-2600-0607 1" & Roller Guide Tach \\
2 & B527-1 & Black Knobs \\
1 & & Molex Connector Assortment \\
1 & D45121-1 & Dash Pot \\
\(1^{6}\) & PCA2500-0625 & Processor Plug-on Board
\end{tabular}

Contents of kit varies with ordering number. Be sure to specify model number and all options installed when ordering kits.

\footnotetext{
\({ }^{1}\) Included in Kit AM only
\({ }^{2}\) Included in all kits except AM
\({ }^{3}\) Included in Kits AI, AJ, AM, AN, and AO only
\({ }^{4}\) Included in Kits AK, AL, AP, and AQ only
\({ }^{5}\) Included in Kit AR only
\({ }^{6}\) Included in Kits AN, AO, AP and AQ only
}

\title{
SECTION 10 UPGRADING KITS
}

\subsection*{10.1 Possible Configurations}

MCI builds six systems in the JH-110 Series: the JH-110B, JH-110B-14, JH-110BC, JH-110BX, \(\mathrm{JH}-110 \mathrm{C}-8\), and the JH-110M. Most of these systems are available in various track configurations and may be converted or upgraded to a different number of tracks and tape widths. With the applicable upgrade kit it is possible to use your JH -110 transport as either a mono recorder or a stereo recorder by simply changing head bridges. Upgrade kits contain a head bridge, roller guides if tape width changes, additional audio electronics if tracks are added, and head cables and power supply cables if required. Consult the JH-110 Series Product Configuration Sheets for kit contents, ordering numbers, and further information.

Any JH-110B or JH-110B-14 can be configured in the following ways:
* mono \(1 / 4\) " format
* two track \(1 / 4\) " format
* DIN stereo \(1 / 4\) " format
* \(1 / 4\) track stereo \(1 / 4\) " format
* two track \(1 / 2\) " format
* four track \(1 / 2\) " format

Any JH-110BC can be configured in the following ways:
* DIN stereo \(1 / 4\) " format
* two track \(1 / 2\) " format

Any JH-110BX can be configured in the following ways:
* Mono \(1 / 4\) " format
* two track \(1 / 4\) " format
* DIN stereo \(1 / 4\) " format
* \(1 / 4\) track stereo \(1 / 4\) " format

Any JH-110C can be configured in the following ways:
* four track \(1 / 2\) " format
* eight track 1" format

Any JH-110M can be configured in the following ways:
* mono \(1 / 4\) " format
* two track \(1 / 4\) " format
* DIN stereo \(1 / 4\) " format
* \(1 / 4\) track stereo \(1 / 4\) " format
* two track \(1 / 2\) " format

\subsection*{10.2 Upgrading A Mono Machine To A Stereo Machine}

This upgrade involves adding one channel of electronics, changing the head cable, and swapping the head bridge assembly. If the change is from a mono machine to a \(1 / 2\) inch format stereo machine, the roller guides must be swapped also. After performing this modification, your tape recorder can be used as either a mono or stereo recorder by simply changing the head bridge assembly (and the roller guides if applicable). The following parts are required:
* Repro Board
* Record Board
* Bias Board
* Audio Mother Board with front panel
* two track head bridge assembly
* stereo head cable
* \(1 / 2^{\prime \prime}\) roller guides if \(1 / 2^{\prime \prime}\) tape format is desired

Step 1. Turn power off.
Step 2. Install the new audio electronics.
a. Remove the filler panel from the electronics drawer.
b. Plug the new Audio Mother Board into the Strip Board.
c. Secure the Mother Board in the drawer with four \#4-40 screws through the board and two \#6-32 screws through the front panel.
d. Plug the audio circuit boards into the Mother Board.

Step 3. Remeve the RTZ III processor assembly.
a. Disconnect the five cables. Note their positions for reassembly.
b. Pull the Processor Board from its shield assembly.
c. Remove the processor board shield by removing the four \#6-32x \(1 / 4\) " screws.

Step 4. Install the stereo head cable.
a. Remove the two \(\# 10-32 \times 1 / 2^{\prime \prime}\) screws holding the cable and shield and remove the shield.
b. Unplug the head cable from the back of the audio drawer.
c. Install the stereo head cable with the two \#10-32 \({ }^{1 / 2}{ }^{\prime \prime}\) screws.
d. Plug the head cables into the back of the audio drawer.

Step 5. Replace the RTZ III processor assembly.
a. Replace the processor shield on its standoffs and tighten the four \(\# 6-32 \times 1 / 4\)," screws.
b. Reconnect the Processor Board to the shield.
c. Plug the cables back into the board.

Step 6. Remove the head bridge assembly by loosening the two hex socket screws and replace with the new head bridge assembly.

\subsection*{10.3 Upgrading A Two Track Machine To A Four Track Machine}

These kits are for the JH-110B and JH-110B-14 tape recorders only. The JH-110BC, JH-110BX, and \(\mathrm{JH}-110 \mathrm{M}\) cannot be upgraded to four track machines.

After performing this upgrade, you can use your JH-110B as either a two track or four track recorder by simply swapping the head bridge and roller guides.

In most cases the tape path width changes from \(1 / 4\) inch to \(1 / 2\) inch. These upgrade kits contain the following:
* Drawer assembly containing two complete channels of audio electronics
* four track head bridge assembly
* \(1 / 2\) inch roller guides
* power supply cable
* four channel head cable

Step 1. Turn power off.
Step 2. Install the new audio drawer assembly.
a. Remove the filler panel from the cabinet by removing the four \#10-32 \(x^{1 / 2}\) " socket head screws.
b. Slide the drawer assembly into the cabinet and replace the four \#10-32 \(x^{1 / 2}\) " socket head screws.

Step 3. Remove the RTZ III processor assembly.
a. Disconnect the five cables, note their correct positions.
b. Pull the Processor Board from its shield assembly.
c. Remove the processor shield by removing the four \#6-32 \(\times^{1 / 4}\) " screws.

Step 4. Install the four track head cable.
a. Remove the two \(\# 10-32 \times 1 / 2^{\prime \prime}\) screws holding the cable and shield. Remove the cable.
b. Unplug the head cables from the back of the audio drawer.
c. Install the four track head cable with the two \#10-32x \(1 / 2^{\prime \prime}\) " screws.
d. Plug the head cables into the back of the audio drawers.

Step 5. Replace the RTZ III processor assembly.
a. Replace the processor shield on its standoffs and tighten the four \(\# 6-32 x^{1 / 4} \mathbf{4}^{\prime \prime}\) screws.
b. Reconnect the Processor Board to its shield.
c. Plug the cables back into the board.

Step 6. Install the new power supply cable.

Step 7. Remove the head bridge assembly by loosening the two hex socket head screws and replace it with the new head bridge assembly.

Step 8. Remove the \(1 / 4\) inch roller guides and replace them with the \(1 / 2\) inch roller guides.

\subsection*{10.4 Installing An Additional Playback Head}

Many users find it useful to have the capability of monitoring \(1 / 4\) track stereo tapes on their JH-110B two track transport. The additional \(1 / 4\) track stereo format repro head mounts in the head bridge to the left of the erase head. Refer to the pictoral in Section 3 showing the mounting of the heads in the head bridge.

This kit contains the following:
* drawer assembly containing two channels of playback only electronics
* \(1 / 4\) track stereo format head assembly with mounting block
* four channel head cable
* power supply cable

Step 1. Perform Steps 1 through 6 of Section 10.3.
Step 2. Install the new head assembly.
a. Remove the head bridge assembly by loosening the two hex socket head screws.
b. Remove the two \#4-40 \(\times 1 / 2^{\prime \prime}\) screws holding the Amp connector in place.
c. Place the new head assembly in the 'optional preview head' location as shown in the Head Assembly Pictorial in Section 3. Secure the head assembly with the \#8-32x \(1 / 2\) " Allen flat head screw.
d. Insert the head wire pins into the Amp connector.
Left channel orange into pin V Left channel green into pin W Right channel orange into pin \(X\) Right channel green into pin \(Y\)
e. Replace the Amp connector. Tighten the two screws until they are just snug, then back the screws out by one half turn. You must allow free play movement for the Amp connector.
f. Replace the head bridge assembly and tighten the mounting screws.

Step 3. Perform the head alignment procedure as described in Section 7.```


[^0]:    * Typical values given. Specifications are largely dependent on tape formulation. Also, the performance of any particular type of tape varies from batch to batch.

