model 3501

amber

Distortion & Noise Measuring System

Operating & Service manual

Issue 09

April 1988

Amber Electro Design Inc. Montreal Canada

LIMITED WARRANTY

AMBER ELECTRO DESIGN INC. warrants its products to be free from defects in material and workmanship for a period of one year from date of original shipment. This obligation is limited to repair or replacement of defective products returned, freight prepaid, to Amber or any of its authorized service representatives. This warranty shall apply only to units which, in the sole opinion of Amber, have not been either subjected to abuse, negligence or accident, or serviced by others contrary to instructions provided by Amber. Batteries and periodic calibration are not covered by this warranty.

Notice of defect should be forwarded to Amber who will then instruct the customer where and how to ship the unit for repair. Unauthorized returns will be refused.

No other warranty is expressed or implied. Amber is not liable for consequential damages. Laws in your area may dictate rights not reflected in this warranty.

AMBER MODEL 3501 OWNER'S MANUAL

Copyright 1988 Amber Electro Design Inc., Montreal Canada

No part may be reproduced without written permission of Amber.

This product is protected by one or more of the following patents: 4,340,854; 3,714,462.

Other patents pending.

Amber Electro Design

6969 Trans-Canada Highway St. Laurent, PQ, Canada H4T 1V8

Telephone: (514) 333-8748

FAX: (514) 333-1388

US Toll Free: 800-361-3697

AMBER model 3501

DISTORTION & NOISE MEASURING SET

OWNER'S MANUAL

Issue 09 April 1988

		
		-
		-
		•
		1
		•
		-
		_
		•
		7

LIST OF ILLUSTRATIONS AND TABLES

P2-1	External Connections
P2-2	Instrument Ground System
P2-3	Front Panel Control Identification
P2-4	Block diagram
P2-5	AC Mains Voltage change taps
P2-14	Standard Weighting Filters
P2-15	Optional Weighting Filters
P2-17	Band Pass Mode
P2-18	Low Pass Mode
P2-24	CCIF Waveform Null
P3-13	Harmonic Accuracy Test
P3-17	DC Isolation Test
P3-19	AM Detector Test
P4-3	Band Pass Filter
P4-8	3 Pole Low Pass Filter
P4-9	3 Pole High Pass Filter
P4-10	Single Pole Pair Band Pass
P4-11	2 Pole Band Reject Filter
P4-12	ANSI-IEC A Weighting Filter
P6-6	Harmonic Waveforms
P6-10	IMD Composite Waveform
P6-11	Knob Removal
P6-12	INPUT/METER Board Functional Location
P6-14	Instrument Exploded View
P6-15	Disassembly Photos
P6-16	Disassembly Photos
P6-18	Table 1 Signal Gain Conditions
P6-19	Table 2 Signal Gain Conditions
P6-20	Table 3 Signal Gain Conditions
P6-21	Table 4 Signal Gain Conditions

DISTORTION & NOISE MEASUREMENT SET

SECTION	CONTENTS	PAGE
7.0	Parts List	7-1
8.0	Schematics	8-1
1	Input Attenuator & Preamp	
3	Input Multiplexer & Switched Gain	
4	Weighting Filters	
5	Function & Gain Logic	
6	Detectors & Meter Drive	
7	Oscillator & AGC	
8	Power Amp & Output Attenuator	
9	Notch Filter	
10	Notch Servo Null	
11	Linear Regulator & Battery Charger	
12	IMD LF Oscillator	
13	IMD Analyzer	
14	Switching Power Supply	
15	Input/Output Board	
16	System Interconnect	
17	Signal Path Output Configuration	
18	Signal Path Simplified Gain & Meter Drive Circuit	•
	Input/Meter Board	3501-410-03
	Filter/Oscillator Board	3501-420-04
	Linear Regulator & Battery Charger	3501-440-06
	Switching Power Supply	3501-450-05
	Input/Output Board	3501-480-08

TABLE of CONTENTS

SECTION	CONTENTS	PAGE
1.	GENERAL INFORMATION	
1.1	Instrument Description	1-1
1.2	Specifications	1-2
1.3	Options	1-10
2.	OPERATING INSTRUCTIONS	
2.0	Introduction	2-5
2.1	Preparation for Use	2-6
2.1.1	Fuses	2-6
2.2	System Description	2-7
2.3	RMS Detection	2-8
2.4	Signal Generation	2-8
2.4.1	Balanced Output	2-9
2.5	Level Measurement	2-10
2.5.1	Balanced Input	2-10
2.5.2	High Crest Factor RMS Measurements	2-11
2.6	Total Harmonic Distortion Measurement	2-12
2.7	Use of Filters	2-13
2.8	Narrow Band Level Measurements	2-16
2.9	dB Relative Measurements	2-19
2.9.1	Signal-to-Noise Measurements	2-19
2.10	Monitor Outputs	2-21
2.10.1	Input Monitor	2-21
2.10.2	Distortion Monitor	2-21
2.11	Power Supply	2-21
2.12	Optional Rechargeable Battery	2-21
2.12.1	Battery Charging Conditions	2-22
2.12.2	Battery Discharge Conditions	2-22
2.13	IMD Distortion Measurement	2-23
2.13.1	SMPTE/CCIF Selector	2-23
2.13.2	SMPTE IMD	2-23
2.13.3	CCIF IMD	2-24

SECTION	N .	CONTENTS	PAGE
	3. F	unctional Verification & Performa	ance Test
3.0	Introd	uction	3-1
3.1	Functi	onal Verification	3-1
3.3	l.1Se	t-up Procedure	3-1
3.3	1.2 Os	scillator & Level Meter	3-1
	F	Functional Verification	
3.3	l.3Fi	Iter Verification	3-2
3.3	1.4To	tal Harmonic Distortion Verificat	ion 3-2
3.3	l.5 dE	Relative Control	3-2
3.1	l.6IN	ID Functional Verification	3-3
3.2	Perfor	mance Test	3-4
3.2	2.1In	troduction	3-4
3.2	2.2 Ed	quipment Required	3-4
3.2	2.3 Os	scillator Level Verification	3-5
3.2	2.4 Os	scillator Flatness Verification	3-5
3.2	2.5 Os	scillator Frequency Accuracy	3-6
3.2	2.6 Os	scillator Total Harmonic Distortion	n 3-7
3.2	2.7Le	vel Meter Accuracy	3-8
3.2	2.8 M	leter Accuracy	3-9
3.2	2.9Fi	Iter Accuracy	3-10
3.2	2.10Fu	indamental Rejection &	3-10
		Residual Distortion Verification	
3.2	2.11Di	stortion Measurement Accuracy	3-12
3.2		esidual Noise	3-14
3.2	2.13 Di	stortion Frequency Accuracy	3-15
	2.14Di	stortion Input Level Requirement	3-16
3.2	2.15Do	C Isolation Check	3-16
4.	Mod	difications & Custom Networks	
4.0	Introd		4-1
4.1		Pass Filter "Q" Adjustment	4-1
4.1	l.1Fi	ter "Q" Modification	4-2
4.2		Servo Inhibit	4-2
4.3	IMD L	ow Frequency Change	4-3

SECTION	CONTENTS	PAGE
	Modifications & Custom Networks (contd.	
4.4	Noise Weighting Filters	4-4
4.4.1	General	4-4
4.4.2	Construction of Custom Networks	4-5
4.4.2.1	3rd Order Butterworth High Pass & Low Pass Filter Networks	4-5
4.4.2.2	ANSI/IEC "A" Weighting	4-7
5.0	Theory of Operation	5-1
5.1	Input Attenuator & Preamp	5-2
5.3	Input Multiplexer & Switched Gain	5-2
5.4	Weighting Filters	5-3
5.5	Function & Gain Logic	5-3
5.6	Detectors & Meter Drive	5-4
5.7	Oscillator & AGC	5-5
5.8	Power Amp & Output Attenuator	5-5
5.9	Notch Filter	5-6
5.10	Notch Servo Null	5-7
5.11	Linear Regulator & Battery Charger	5-7
5.11.1	Battery Charger	5-7
5.11.2	Linear Regulator	5-8
5.11.3	Low Battery Warning Indicator	5-8
5.11.4	Power Switch	5-9
5.12	IMD Low Frequency Oscillator	5-9
5.13	IMD Analyzer	5-10
5.14	Switching Power Supply	5-10
5.14.1	Oscillator & Power Switching Circuit	5-11
5.14.2	Output Rectifier Circuit	5-11
5.15	Front Switch Assembly	5-11
5.16	System Interconnect	5-11
5.17	Signal Path, Output Configuration	5-12
5.18	Gain & Meter Drive Signal Path	5-12
5.19	Instrument Ground System	5-12
5.20	Power Transformers	5-12

SECT	NOI	CONTENTS	PAGE
6.0		Maintenance & Calibration	
6.1		Calibration	6-3
6.2		Input/Meter Board	6-3
	6.2.1	Level Meter Calibration	6-3
	6.2.2	Radiometric Calibration	6-4
	6.2.3	Common Mode Rejection	6-4
6.3		Filter/Oscillator Board	6-5
	6.3.1	Filter Circuit Calibration	6-7
	6.3.2.1	Filter Second Order Trim	6-7
	6.3.2.2	Filter Second Order Trim	6-7
	6.3.3	Fundamental Rejection Trim	6-8
	6.3.4	Filter H.F. "Q" Enhancement Trim	6-8
	6.3.5	Oscillator Circuit Calibration	6-8
	6.3.6	Frequency Independent Second	
		Harmonic Cancel Trims	6-8
	6.3.7	High Frequency Second	
		Harmonic Cancel Trims	6-9
	6.3.8	Power Amplifier Bias Adjust	6-9
	6.3.9	Oscillator Level Adjust	6-9
	6.3.10	Oscillator H.F. "Q" Enhancement Adjust	6-9
	6.3.11	Balanced Output Distortion Null	6-9
6.4		IMD Board	6-9
6.5		Power Supply Board	6-10
	6.5.1	Output Rail Voltage Adjust	6-10
	6.5.2	Battery Charge Current Adjust	6-10
6.6		Maintenance Section	6-11
	6.6.1	3501 Disassembly Instructions	6-11
	6.6.2	Access to the Front Panel Output	
		Board & IMD Board	6-12
	6.6.3	Access to the Input Meter Board	6-12
	6.6.4	Access to the Filter/Oscillator Board	6-13
	6.6.5	Access to the Power Supply Board &	
		Switcher Assembly	6-13

AMBER model 3501

DISTORTION & NOISE MEASURING SET

OWNER'S MANUAL

SECTION 1

GENERAL INFORMATION

Issue 09 April 1988

1. GENERAL INFORMATION

1.1 Instrument Description

The Amber model 3501 Distortion and Noise Measuring Set incorporates in a single compact enclosure an ultra low distortion sine wave generator, a high performance total harmonic distortion measuring system and a wide range, high sensitivity signal level and noise measuring facility.

In addition, a tunable band pass filter is included allowing the system to function as a selective voltmeter for manual spectrum analysis. This filter may also be configured as a low pass filter for band limited noise measurements.

The instrument incorporates a comprehensive set of user modifiable filters for weighted noise measurements to various standards and band limiting in the distortion mode.

As an option, the instrument may also be fitted with an additional oscillator and an In-

termodulation Distortion measurement facility.

The instrument includes a balanced differential input and may also be fitted with an optional balanced output interface for measurements of professional and broadcast systems. Additionally, a high resolution digital frequency meter may be fitted.

The instrument contains a high efficiency power supply and may optionally include an internal rechargeable battery and charger. It may be powered from any international voltage from 100V to 240V AC, 50 or 60 Hz.

The model 3501 provides a high level of performance in a size significantly smaller than conventional instruments yet its performance in virtually every parameter rivals that of the best laboratory instruments. Speed of operation and speed of measurement have been optimized and automatic operation is provided for many functions.

MODEL 3501 SPECIFICATIONS

SIGNAL SOURCE (unbalanced output)

Frequency Range	: 10Hz to 100kHz in four overlapping ranges. Continuously variable vernier drive FREQUENCY control permits selection of any frequency.
Output Level Range	: maximum + 18dBm (+20dBm typical) into 600 ohm load, (12.6V rms open circuit) to ≤60dBm minimum plus OFF.
Output Level Control	: 9 steps of 10dB (±0.5dB at 1kHz) and variable control of ≥ 10dB.
Amplitude Flatness (referred to 1kHz)	: ±0.1dB 20Hz to 20kHz ±0.2dB 10Hz to 100kHz
Output Source Impedance	: 600 ohms ±2% at all control settings (except MAX where impedance is approx. 300 ohms).
Distortion: (THD) (RL ≥600 ohms) (passive notch THD measurement method)	: 50Hz to $5\text{kHz} \le 0.0008\%$ (-102dB) 10Hz to $10\text{kHz} \le 0.0015\%$ (-96dB) 10kHz to $50\text{kHz} \le 0.003\%$ (-90dB) 50kHz to $100\text{kHz} \le 0.006\%$ (-84dB)
Additional specifications	for option 006 IMD:
Signal Source (SMPTE/DIN Mode)	: Composite mix of main oscillator and additional low frequency oscillator.
Amplitude Ratio	: LF:HF 4:1 \pm 5% (\pm 0.5dB)
LF Signal	: 60Hz ±5% (internally changeable from 20Hz to 500Hz)
HF Signal	: 2kHz to 100kHz total range.
Residual IM (SMPTE/DIN mode)	: ≤0.003% (-90dB)

Supplementary data for option 006:

00	TT	17.	1
CC	Ir	IVIC	ae:

Rear panel external input for second signal to mix with internal oscillator to generate twin-tone composite signal.

With external oscillator level of approximate + 10dBV (316mV rms) mix ratio will be 1:1.

Additional specifications for option 005 Balanced Output:

Output Level Range	: maximum +28dBm (+30dBm typical) into 600 ohm load, (24V rms open circuit) to ≤-60dBm minimum plus OFF
Amplitude Flatness: (referred to 1kHz)	±0.2dB 20Hz to 20kHz ±0.5dB 10Hz to 100kHz
Output Source Impedance	: 600 ohms ±2% at all control settings except MAX where impedance is < 100 ohms
Distortion (THD) (+28dBm to -30dBm) terminated or open circuit. Passive notch THD measurement metho	: 50Hz to 5kHz ≤0.0015% (-96dB) 20Hz to 20kHz ≤0.003% (-90dB) 20kHz to 50kHz ≤0.006% (-84dB) 50kHz to 100kHz ≤0.01% (-80dB) d. 10Hz typically ≤0.03% (-70dB)

Supplementary Data for Signal Source:

Output Configuration Unbalanced	: Output BNC connector may be referenced to chassis or floated above ground $\pm 30V$ peak. ($\leq 0.5 \mu f$ between low output terminal and chassis in float mode)
Balanced	: Output connector is tip-ring-sleeve telephone style jack (mates with WE-310 plug or equivalent). Output is transformer coupled to provide isolation and balance. Center tap may be referenced to chassis or floated above ground ±30V peak. (≤0.5µf between output center tap and chassis in float mode)
Output DC Offset	: Unbalanced : $\leq 0.1\%$ of output AC rms voltage Balanced : $\leq 0.1\%$ of output AC rms voltage

DISTORTION & NOISE MEASUREMENT SET Section 1

AMBER model 3501 Owner's Manual

DISTORTION MEASUREMENT (THD + N)

(specifications apply to both balanced and unbalanced input except where noted):

Fundamental Frequency

: 10Hz to 100kHz in four overlapping ranges

Range

Input Level Range : +40dBV to -30dBV

(+42dBm to -28dBm) (100V rms to 30mV rms)

Measurement Bandwidth : 10Hz to 300kHz ±3dB

Accuracy : Fundamental 20Hz to 20kHz: ±1dB

(harmonic measurement) Fundamental 10Hz to 50kHz: ±2dB

Fundamental 50kHz to 100kHz: ±3dB

Residual THD + N : 20Hz to 10kHz, 30kHz B.W. : < 0.0018%/-95dB

Input signal within 50Hz to 5kHz, 30kHz B.W.

top one third of meter scale typically: < 0.0008%/-102dB

in LEVEL mode 10Hz to 10kHz, 80kHz B.W.: < 0.003%/-90dB

and signal > 0dBV (1Vrms) 10kHz to 100kHz, full B.W.: < 0.01%/-80dB

Supplemental Data for THD + N Measurement:

Fundamental Rejection : Typically 10dB below specified residual THD

of instrument or actual signal THD,

whichever is greater.

AMBER model 3501 Owner's Manual

DISTORTION & NOISE MEASUREMENT SET Section 1

DISTORTION MEASUREMENT (IMD) (requires option 006) Specifications apply to both balanced and unbalanced input except where noted.

Function:

SMPTE/DIN Mode: Measures LF signal AM modulation of

HF signal as a percentage or ratio of HF signal

CCIF Mode:

Measures difference frequency

component (F₁ - F₂) expressed as a percentage

or ratio of high frequency twin-tone

composite signal

Frequency Range

SMPTE/DIN:

Low frequency: 10Hz to 500Hz

High frequency: 2kHz to 100kHz

CCIF:

Mean frequency: 2kHz to 100kHz

 $F_1 - F_2$

: 10Hz to 1kHz

Input Level Range:

Same as THD

Amplitude Mix

SMPTE/DIN:

1:1 to 5:1 (LF:HF)

CCIF:

 $1:1 \pm 10\%$

Residual Distortion:

SMPTE/DIN (LF 20Hz to 200Hz,

HF 5kHz to 100kHz, mixed at 4:1)

 $: \le 0.003\% \text{ (-90dB)}$

CCIF (5kHz to 100kHz,

 $F_1 - F_2 = 20$ Hz to 500Hz mixed at 1:1 : $\leq 0.003\%$ (-90dB)

Accuracy (same conditions as residual distortion specifications above): $\pm 1 dB (\pm 10\%)$

DISTORTION & NOISE MEASUREMENT SET Section 1

AMBER model 3501 Owner's Manual

LEVEL/NOISE MEASUREMENT FUNCTION

(specifications apply to both balanced and unbalanced input except where noted)

Maximum input level

: +40 dBV, (+42 dBm, 100 V rms)

Minimum signal reading

LEVEL mode

: -70dBV (-68dBm, 0.3mV)

LOW PASS or BAND PASS mode: -130dBV, (-128dBm, 0.3µV)

Bandwidth (-3dB)

: 3Hz to ≥ 300kHz

Residual Noise (source resistance 1k ohm):

Low Pass Mode:

 $F_c \le 5kHz : \le -120dBV (1\mu V)$

 $F_c \le 100 \text{kHz} \le -110 \text{dBV} (3\mu\text{V})$

Band Pass Mode (12% BW):

 $F_c \le 1kHz : \le -120dBV(1\mu V)$ $F_c \le 100 \text{kHz}: \le -100 \text{dBV} (10 \text{ µV})$

Accuracy, LEVEL Mode

Input Signals -60dBV (1mV)

or greater

: 20Hz to 20kHz : $\pm 2\%$ (± 0.3 dB)

10Hz to 100kHz: $\pm 4\%$ (± 0.5 dB)

Common Characteristics, measurement section.

(Applies to unbalanced input except where indicated.)

Input Impedance

: 100k ohms $\pm 2\%$ shunted by ≤ 100 pf

Balanced Input

: 100k ohms $\pm 2\%$ each side to ground shunted by $\leq 200 \text{pf}$

Common Mode Rejection : ≥40dB at 50 or 60Hz

(balanced input)

dB Relative Control range : ± 12dB

DISTORTION & NOISE MEASUREMENT SET Section 1

Supplemental data for measurement section:

Meter Detection	: True rms for signals with crest factor ≤ 3	
Meter Scales	: dBm (ref 1mW, 600 ohms) - linear + 4dBm to -8dBm dBV (ref 1V rms) - linear +2dBV to -10dBV Volts, percent-logarithmic 4 to 1 and 1.2 to 0.3	
Indicators	: Two input level LEDs indicate over or under range in DISTORTION mode to facilitate correct setting of INPUT level control. Low LED warns when input level is below minimum input level (i.e30dBV).	
	Two tuning LEDs facilitate tuning of analyzer in THD mode when using an external oscillator	
Monitors	: INPUT MONITOR provides scaled presentation of input signal. Signal level approximately -10dBV (316mV rms) for full scale signals and INPUT control settings of +40 to -20dB. Proportionately lower at lower settings. Source impedance 600 ohms ±10%	
•	DISTORTION MONITOR provides scaled presentation of function being measured: input signal in LEVEL mode, distortion components in DISTORTION modes and filtered signal in LOW PASS or BAND PASS modes. Signal level approximately -10dBV (316mV rms) with full scale readings in both LEVEL mode and for measured value. Proportionately lower with lower levels. Source impedance 600 ohms ±10%.	
FILTERS:		
400Hz High Pass (standard)	: -3dB at 400Hz ±5%, at least 40dB rejection at 60Hz	
30kHz Low Pass (standard)	: -3dB at 30kHz ±5%	
80kHz Low Pass (standard)	: -3dB at 80kHz ±5%	

Supplementary Data for Filters:

Filter Characteristics of three standard filters described above

***	: 3 pole Butterworth response (18dB/octave)
Auxiliary Filter	: 16 PIN socket to accept various filters available from Amber including ANSI/IEC A Weighting, CCIR and others. Details provided for user construction of custom filters.
Band Pass Level Mode	: Tuneable band pass filter with a bandwidth of approximately 12%. User changeable from 100% to less than 1% with single resistor change.
Low Pass Level Mode	: Low pass filter with tuneable cutoff point. Slope characteristics: 12dB per octave. Pass band ripple 3dB.
Frequency Range Band Pass & Low Pass Modes	: 10Hz to 100kHz (tracks oscillator within ±3%).

AMBER model 3501 Owner's Manual

DISTORTION & NOISE MEASUREMENT SET Section 1

General:

Temperature,	operating	: 0°C to	+50°C

Temperature, storage : -40° C to $+75^{\circ}$ C

Humidity Range : <95% RH, 0°C to +40°C

Power Requirements : Instrument operates from external AC mains

at 100, 120, 220 or 240V rms +5%, -10%, 48 to 62Hz.

Internal Battery : 12V rechargeable battery and charging system (option 001) provide 1.5 hours or more of instrument operations.

provide 1.5 hours or more of instrument operation after full charge. Two rate charger automatically switches

between high charge and float made

between high charge and float mode.

(option 002) : Same as above but provides 3 hours or more.

Dimensions (excluding bottom feet and front and rear panel projections):

 $H \times W \times D$: 114 mm x 292 mm x 356 mm

(4.5 in x 11.5 in x 14 in)

Weight : Basic instrument : 5.7 kg (12.5 lbs)

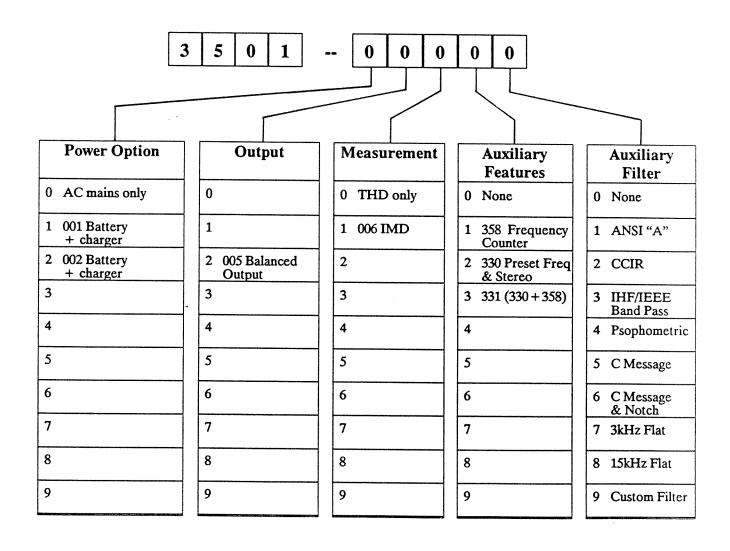
As above with 001 Battery: 6.8 kg (15 lbs

As above with 002 Battery: 8.2 kg (18 lbs)

Note: Values shown in SPECIFICATIONS are warranted specifications.

SUPPLEMENTARY DATA shown in italics are non-warranted and

supplied for information only.


All specifications subject to change without notice.

1.3 OPTIONS

Note: All 3501 instruments will have the same outward appearance, that is, the front panel will incorporate provision for all options. Thus although the front panel pushbutton for IMD or OUTPUT BALANCED operation may be present, it does not necessarily mean that the internal module is present to provide the function. The front panel and internal wiring are present to

facilitate future instrument upgrade by the user.

To determine the instrument configuration at the time of initial factory shipment note the five digit model number suffix recorded on the serial number plate on the rear panel of the instrument. Below is a table showing the option configuration for various model numbers.

001 RECHARGEABLE BATTERY & CHARGER SYSTEM

12V 2.5AH battery and power supply provides independent instrument power and isolates grounds. Gives approximately one and one half hours or more of operation on a full charge. Automatically shuts down instrument when battery reaches end of life.

002 EXTENDED LIFE BATTERY & CHARGER

Same as 001 above but with 12V 5AH battery for approximately 3 hours or more of operation.

005 BALANCED OUTPUT

Adds a floating/balanced output capability to instrument. Also increases capability to provide up to +28dBm (+30dBm typical) output capability into a 600 ohm load. Uses a transformer for true float and a proprietary active correction technique to virtually eliminate distortion contribution.

006 INTERMODULATION DISTORTION MEASUREMENT/GENERATION FACILITY

Adds a second (low frequency) oscillator and mixing circuitry to provide twin-tone composite signal (SMPTE type) and intermodulation measurement circuits to measure SMPTE, DIN, CCIF or IHF distortion. Frequency range 2kHz to 100kHz.

107/108 RACK MOUNT KIT

Mounts the 3501 and its options in a standard 19 inch EIA rack. Option 107 occupies three

rack units (nominal 5.25 inches) in height to mount a standard 3501. It can also be supplied in a four rack unit height (nominal 7 inches) to mount a 3501 and a 358 combined.

Option 108 occupies five rack units (nominal 8.75 inches) to mount a 3501 with either a 330 or 331 option.

109 SPEAKER AMPLIFIER

Adds an internal speaker and power amplifier to allow aural monitoring of the measured signal. Can be used in the narrow band mode to find interference signals in noise or in the distortion modes to identify the distortion products. A front panel volume control is included.

330 PRESET FREQUENCY and STEREO SWITCH MATRIX

This adds a stereo switch matrix on the input and output, a preset modulation percentage switch and a preset frequency switch. This facility is particularly suited to stereo broadcast transmitter measurements. Provision is included to allow the generator to feed Left channel only, Right channel only, Left and Right in phase (L+R) and Left and Right out of phase (L-R). A four-channel input switch allows independent selection of Left, Right, Aux A or Aux B input signals. A six position modulation percentage switch selects 100%. 95%, 85%, 75%, 50% or 25% and adjusts the generator output signal level accordingly. Finally, 15 common preset frequencies allow quick selection of test frequency. Frequencies are 50, 100, 200, 250, 300, 400, 1k, 2k, 2.5k, 3k, 5k, 7.5k, 10k, 12.5k and 15kHz.

331 This option combines options 330 and 358 in a single enclosure. See the separate descriptions above.

358 HIGH RESOLUTION FREQUENCY METER

Adds a six digit frequency readout of internal oscillator or external signals. Frequency multiplier provides two orders of magnitude improvement in measurement speed/resolution over conventional meters with several readings per second and up to 0.01Hz resolution. "Smart" signal detector automatically blanks display in absence of sufficient signal amplitude. Auto range circuitry (with manual override) permits measurement from below 10Hz to over 500kHz (typically 1MHz). Using the high meter sensitivity and filtering of the 3501, valid measurement of low level and noisy signals is possible. Pushbutton input selection permits measurement of 3501 oscillator, external signal input or the external signal with filtering.

Pushbuttons select either fast (approx. 3 readings/second, 0.1 Hz resolution) or high resolution (0.01Hz resolution, 1 reading/second).

The 358 is powered by the 3501 internal power supply and automatically switches off when the 3501 is turned off. It mounts on the top cover of the 3501 adding approximately 1.2 inches (3 cm) to the height and is 7.7 in-

ches (20 cm) wide by 8.5 inches (22 cm) deep. It plugs in to existing connectors on the 3501 and may be field retrofitted.

960 CARRYING CASE

A durable, shippable case houses the 3501 and accessories. Internal foam lining protects the instrument from shock. External metal corners and reinforcing is suitable for common carrier shipping.

FILTERS

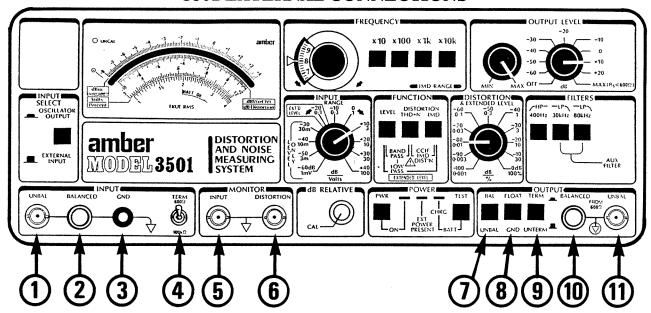
To accommodate various noise weighting standards several special and custom filters are available. Normally, if a single optional filter is ordered, it will be fitted to the AUX FILTER position of the 3501. Alternatively, any of the four filter positions may be populated with any of several available filters.

Typical choices for standard optional filters include ANSI/IEC "A" weighting and CCIR 468-2.

Custom filters include the IHF-T-200/IEEE 185 receiver band pass, the telecommunications C message weighting with and without notch, program weighting and Psophometric. One, two and three pole high pass and low pass filters are easily accommodated and may be either purchased from Amber or constructed by the user from data supplied in the 3501 owner's manual.

AMBER model 3501

DISTORTION & NOISE MEASURING SET


OWNER'S MANUAL

SECTION 2

OPERATING INSTRUCTIONS

Issue 09 April 1988

3501 EXTERNAL CONNECTIONS

INPUT CONNECTIONS

Connect unbalanced or single ended source to 1.

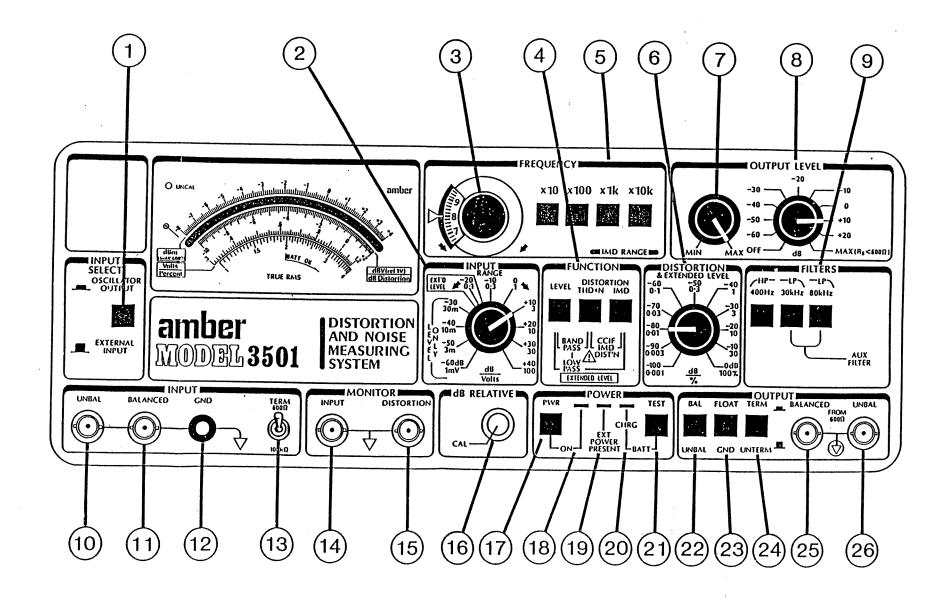
Connect balanced or non-ground referenced sources to 2. Floating or bridged power amplifiers would connect here.

This differential input can also be used to break ground loops: connect external source to tip, external ground to ring and input cable shield to sleeve. GND terminal (3) is chassis and same potential as shell of 1 or sleeve of 2.

OSCILLOSCOPE CONNECTIONS

Use dual trace oscilloscope. Connect trace A to 5 to view fundamental, trigger on this trace. Connect trace B to 6 to see distortion components.

OUTPUT CONNECTIONS

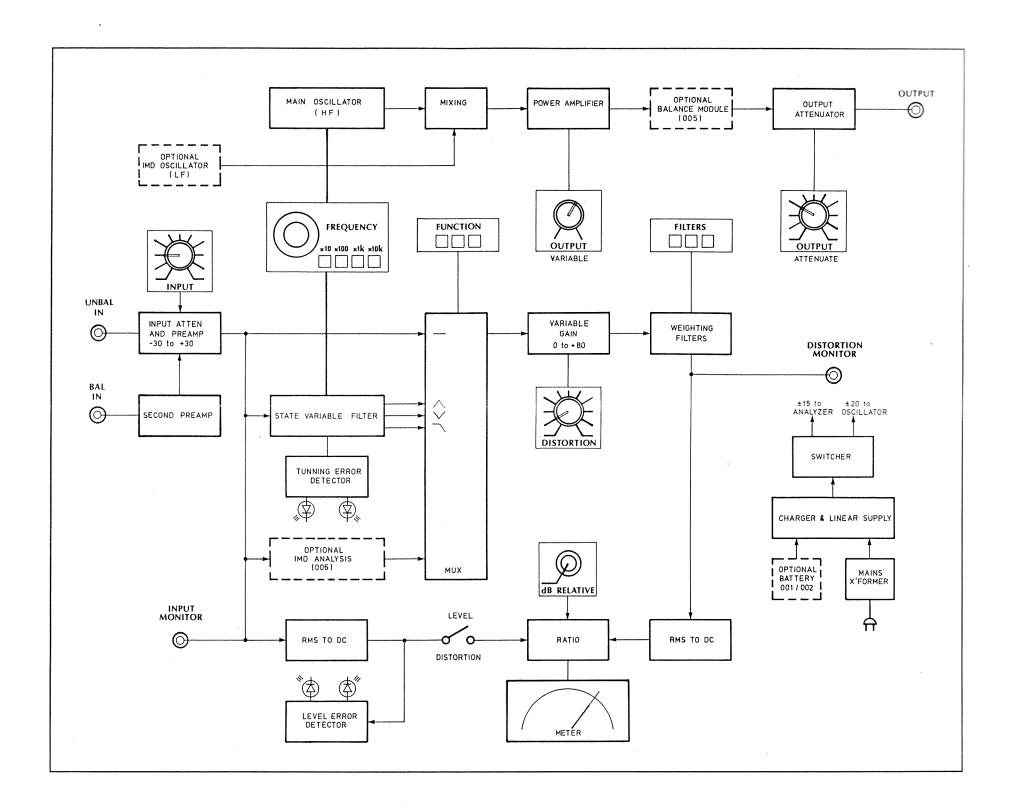

Connect inputs of unbalanced or single ended devices to be tested to 11.

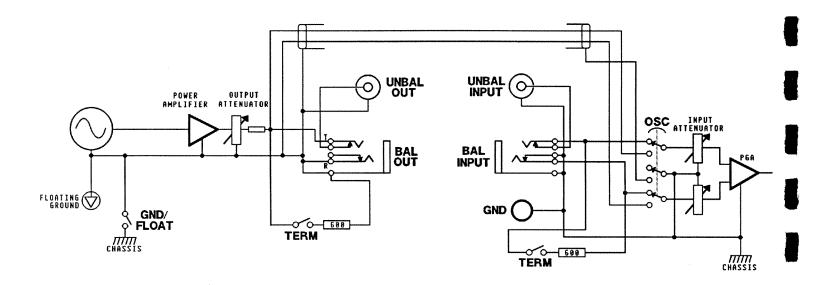
If option 005, BALANCED OUTPUT, is provided, connect balanced devices to 10 (use a telephone style WE-310/PJ051 tipring-sleeve plug).

Select balanced or unbalanced mode at 7.

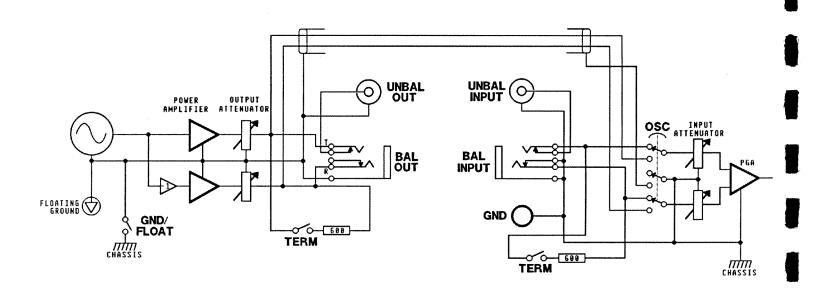
Select grounded output or floating output at 8. Use grounded mode if 3501 being used as an oscillator only. If analyzer section is also connected to device under test, use FLOAT mode as ground will be via input ground connection to 3501.

9 terminates oscillator output in 600 ohms or leaves output unterminated.




- 1) INPUT SELECT PUSHBUTTON. Selects input to analyzer. Push in to read actual GENER-ATOR OUTPUT LEVEL for any value of external load. Release to read the INPUT signal.
- INPUT control determines input sensitivity. Set for an on-scale meter reading in the LEVEL mode or to extinguish the HI and LO LED warning indicators in distortion modes.
- 3) FREQUENCY vernier control. Sets significant digit of oscillator and analyzer frequency.
- 4) FUNCTION pushbutton group. Basic functions of LEVEL, TOTAL HARMONIC DISTORTION and SMPTE INTERMODULATION DISTORTION are set by pushing one of the three buttons. Special functions of BAND PASS LEVEL, LOW PASS LEVEL & CCIF INTERMODULATION DISTORTION are selected by pushing two buttons together. (Note IMD functions operational only if option 006 is installed.)
- FREQUENCY RANGE pushbutton selects multiplier of number set by rotary vernier knob.
- DISTORTION control determines meter sensitivity. Set for an on- scale meter reading in the DISTORTION mode or the BAND PASS/LOW PASS mode.
- Output control provides a nominal 12dB variation of output level.
- 8) OUTPUT attenuator sets the nominal 10dB step of output range. Source impedance is 600 ohms (in all positions except MAX). When output is loaded with 600 ohms, all steps (except MAX) will be 10dB. OFF position shuts down oscillator but retains 600 ohm source impedance.

- 9) FILTER pushbutton group. Chooses appropriate selection from four available filters. Three standard filters selected by pushing in one or more of the three buttons. Fourth (AUX FILTER) filter position selected by pushing in second and third button simultaneously (only functional if optional fourth filter installed).
- 10) UNBALANCED INPUT connector. Use for single ended sources. Shell of BNC connector is normally connected to chassis but floats when PUSH FOR OSCILLATOR is pushed. Input impedance set by (13) is 100k ohms or 600 ohms in parallel with about 100pf.
- 11) BALANCED INPUT connector. Tip, ring and sleeve telephone-type connector (e.g. WE310) for balanced inputs. Sleeve is chassis when INPUT is selected. Inserting a plug disconnects the UNBAL input.
- GROUND post is normally connected to chassis but floats when PUSH FOR OSCILLATOR is pushed.
- 13) INPUT TERMINATION switch selects input impedance for both balanced and unbalanced inputs.
- 14) INPUT MONITOR connector presents a scaled replica of INPUT signal after INPUT control.
- 15) DISTORTION MONITOR connector presents a scaled replica of signal being measured: the input signal in LEVEL, distortion residual components in DISTORTION and the selective filter output in BAND PASS or LOW PASS.
- 16) dB RELATIVE control allows meter reading to be offset up to 12dB to set an arbitrary zero dB reference. (Useful for frequency response and signal-to-noise measurement.)


- 17) POWER ON/OFF pushbutton. Turns instrument on and off using either internal (battery) or external (transformer) power source. Will turn off automatically on low battery.
- 18) POWER indicator. Red LED indicates unit is ON. When optional battery reaches last 10% of life, LED starts to blink. Blinking duty cycle increases as battery nears end of discharge until instrument automatically shuts off.
- 19) EXTERNAL POWER PRESENT indicator. Green LED indicates the presence of adequate external power source, typically AC mains via the wall plug transformer. Will extinguish if mains voltage is too low or internal fuse opens.
- 20) CHARGE indicator. Orange LED indicates high-charge rate of battery charging. When battery is fully charged, indicator will extinguish and charger will switch to a float charge mode. High-charge rate may require instrument to be switched off. (Functional only if option 001 or 002 battery is installed.)
- 21) BATTERY TEST pushbutton. Switches measurement meter to battery to measure battery charge condition. Should be pushed with instrument turned ON. A reading of mid-scale ("BATT OK") or greater indicates satisfactory battery charge. Deflection is approx. proportional to battery life available. (Meaningful only if option 001 or 002 battery is installed.)

- 22) BALANCED/UNBALANCED pushbutton. (Valid only if option 005, Balanced Output, is provided.) With button out, generator output is present on UNBAL BNC connector and in a single ended mode on the tip- ring-sleeve BAL jack. With button in, optional balancing system is inserted and a balanced output appears at the T-R-S jack.
- 23) FLOAT/GROUND pushbutton. In unbalanced mode, button pushed in sets shell of BNC and sleeve-ring of jack to a floating condition with respect to instrument chassis and input ground. With button out, all grounds are common. In balanced mode, button in sets BAL out to float condition. Sleeve is chassis ground and center tap of output floats with respect to instrument ground. With button out, sleeve and center tap are connected to instrument common ground (chassis).
- 24) TERMINATE/UNTERMINATE pushbutton. With button out, output is unterminated. With button in, output is terminated (i.e. loaded with 600 ohms). Note that output source impedance is 600 ohms at all times except if OUTPUT ATTENUATOR is set to MAX when output source impedance is approximately 300 ohms unbalanced, d ohms balanced.
- 25) BALANCED output jack. Tip, ring and sleeve telephone type jack provides balanced output in balanced mode (with option 005) or single ended output (tip and sleeve) in unbalanced mode. Use only WE310 type plug.
- 26) UNBALANCED output connector. BNC connector provides unbalanced output. Disconnected in BALANCED mode.

UNBALANCED MODE. This is a simplified schematic of INPUT and OUTPUT connections in the UNBALANCED MODE. INSTRUMENT GROUND is chassis.

BALANCED MODE. This is a simplified schematic of INPUT and OUTPUT connections in the BALANCED mode (provided option 005 is installed.)

2. OPERATING INSTRUCTIONS

2.0 INTRODUCTION

This section contains detailed operating instructions for use of the model 3501 instrument. It describes the general philosophy of the instrument, description and use of its operating controls, interface to the device under test and any required external equipment.

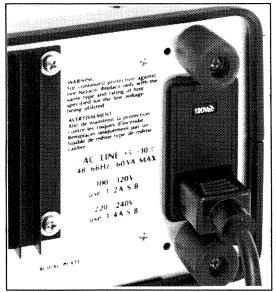


Figure 2.1

Rear panel AC mains connector with cord in place.

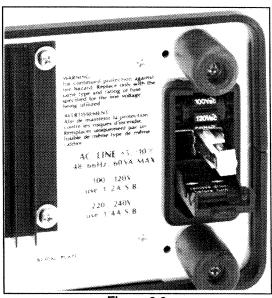


Figure 2.2

Mains connector opened to show voltage change drum and fuse carrier.

Volts	90 to 105 Volts	0.5A S.B.	
	70 to 103 yous	1 U.JA 3.D.	
Volts	108 to 126 Volts	0.5A S.B.	
Volts	198 to 231 Volts	0.25A S.B.	
Volts	216 to 252 Volts	0.25A S.B.	
	i i		

Table 2-1

2.1 PREPARATION FOR USE

The model 3501 is able to be powered from virtually any common mains power source available worldwide. It can be set to require a nominal voltage of 100, 120, 220 or 240 V AC and will accept any frequency from 48 to 62Hz.

The AC mains is connected to a rear panel mounted standard IEC receptacle. A supplied line power cord can be used for North American operation. Users in other areas may either remove the North American plug and substitute their own or, if local code requires, provide a mains power cord with a suitable plug and cable type.

The mains power receptacle also contains a fuse holder and a voltage selection mechanism to allow the user to adapt the instrument to suit the power source available. Before connecting the instrument to the AC mains source, be sure to set these conditions properly. Severe internal damage to the 3501 can result if conditions are not properly set.

Figure 2-1 shows the AC mains receptacle/fuse holder/voltage tap selector. A small window just above the receptacle will display a nominal voltage from one of the following choices: 100, 120, 220, 240. If it is showing a number corresponding to the supply you intend to use, you need not make any further changes. Simply connect the AC mains cord and use the instrument.

If the displayed number does not correspond to the intended choice, you will have to change the selection and you may also have to change the fuse. Refer to Table 2-1 for information on the correct setting.

To change the voltage selection, remove the AC mains cord and pull down the small hinged door above the AC receptacle. This will expose a drum that has the four available voltage selections printed on its circumference. Rotate the drum to the desired selection.

If it is necessary to change the fuse, pull out the rectangular fuse carrier. The fuse may be removed and a new fuse inserted. Replace the carrier with the same orientation as before. Note that the supplied carrier is sized to accept North American 3AG type fuses (1.25 inch x 0.25 inch). Alternatively, Amber can supply a carrier to accept European type (5 x 20 mm) fuses.

With the proper fuse installed and the correct voltage selection visible on the drum, close the hinged door until it snaps. The selected nominal voltage will be visible through a small window.

Note that some countries may have an electrical safety code that requires both sides of the line to be independently fused. To conform to the majority world requirement, Amber provides a fuse for only the LINE side of the input. However, the AC mains receptacle/fuse holder/voltage tap assembly allows for two fuses to be used although some modification will be required. There is a slot for a second (identical) fuse carrier and the connector assembly can be rewired to include a fuse in the NEUTRAL side of the line. Refer to the technical information in Section 8 of this manual.

2.1.1 FUSES

The primary mains fuse is located in the AC mains receptacle on the rear panel as

described in Section 2-1. A second fuse is included internally after the secondary of the mains transformer. If this fuse opens, the instrument will not receive external mains power even if the external primary fuse is functional. This will prevent the instrument from being powered from the mains supply and inhibit the operation of the optional battery charger. However, the internal battery will continue to be usable as a power source until discharged. If no battery is present, the instrument will simply not turn on. If a battery is present, the instrument may turn on as long as some charge remains in the battery. Check the "MAINS POWER PRESENT" green indicator on the front panel. If the red POWER indicator is on but the green indicator is off, the instrument is being powered by the battery only.

2.2 SYSTEM DESCRIPTION

The model 3501 Distortion and Noise Measuring set contains two electrically separate but mechanically interlocked sections: a Generator and a Measuring system. As such, it is completely able to perform measurements without the use of additional equipment although an oscilloscope is very useful.

The system will measure wide-band signal level, wide-band noise, total harmonic distortion, band limited noise and crosstalk. By extension, it can measure frequency response, noise spectrum, distortion versus frequency and distortion versus level.

The instrument contains a precision ultra low distortion sine wave oscillator followed by a power amplifier and output attenuator. This generator is able to generate the test signals for all the measurements possible in the measuring system. (An exception is CCIF IMD Section 2.13.3.)

Signal and noise levels are measured by a precision variable gain amplifier followed by a true rms detector and analog meter. It is capable of operation over a wide dynamic range of up to 160dB or 100 million-to-one.

The primary function of the instrument is to measure total harmonic distortion. In fact, the more precise description of the resulting measurement is "Total Harmonic Distortion plus Noise". It does this by sending an essentially pure single frequency to a device under test, eliminates this fundamental frequency from the received signal output of the device under test, measures everything that is left and presents this amplitude as a ratio of the total received signal.

For example, assume a test frequency of 1kHz. The 3501 will generate this signal with harmonics greater than 100dB down resulting in an essentially pure signal. For simplicity, assume the device under test is unity gain and we wish to measure THD at 0dBV, i.e. a 1V level. The generator will provide the 1kHz, 0dBV signal to the input of the device under test, the 0dBV signal output will be fed to the input of the 3501. A very deep notch filter (band reject filter) will provide over 100dB of rejection of the 1kHz fundamental. The non-linearities of the device under test will have added components at 2kHz, 3kHz, 4kHz, etc. The RMS meter of the 3501 will measure the amplitude of the root mean sum of these, compare this amplitude to that of the fundamental and display the result as a percentage or dB ratio. If the amplitude of the rms sum of the harmonics were 1 mV in this example, the meter would indicate 0.1% or -60dB.

Since the measuring circuits are measuring the total bandwidth minus only the small fundamental area, they will also measure noise along with the harmonics. In many cases, the noise will be below the harmonics and the measurement will be very close to the true harmonic distortion. In other cases, the noise will be higher and thus the measurement will actually be mostly noise and very little distortion. The use of an oscilloscope to monitor the distortion residual will assist the user in qualifying the measured result. Also see the section on Filters 2.7 following.

2.3 RMS DETECTION

Distortion and noise measurements will generally involve complex waveforms. Average-responding meters, which are usually calibrated in rms for a pure sine wave, will give significant errors when attempting to measure these complex waveforms. For this reason, the 3501 employs a precision rms detector in the measurement circuits.

Certain waveforms can yield an error of over 10% when measured with an average responding detector. The rms measuring circuits of the 3501 will provide an accurate measurement of signals with crest factors as high as 10 full scale (see Section 2.5.2 following). This assures accurate indication of distortion and noise signals.

2.4 SIGNAL GENERATION

The 3501 contains an ultra low distortion sine wave oscillator, an output power amplifier and an output attenuator. Also included are

facilities to measure the output signal level using the 3501 meter.

The generator has a frequency range of 10Hz to 100kHz covered in four overlapping decade ranges. It has an amplitude range of +20dBm to - 60dBm unbalanced or up to +28dBm balanced and terminated. It provides continuous tuning and continuous level selection over its full operating range. Although ultra low distortion, it exhibits extremely fast amplitude settling time even at low frequencies. Output source impedance of the generator is 600 ohms at all but one attenuator setting including OFF. The exception is the MAX setting of the OUTPUT ATTENUATOR where the output source impedance is approximately 300 ohms unbalanced or < 100 ohms balanced. The output low terminal (BNC shell) is isolated from input low and chassis ground when in the FLOAT mode.

Frequency selection is made using the vernier drive rotary control and four-button switch bank in the FREQUENCY area of the panel. Actual frequency is the indication on the rotary dial multiplied by the number on the selected range. Some overlap is provided at each end of the rotary control to ensure that all frequencies within the instrument range are available.

Where the same frequency appears in two ranges (example 100Hz, 1kHz, 10kHz) the preferred selection is the lower range with the rotary control set to 10. (Example, 1kHz found by 10 x 100 rather than 1 x 1k; residual distortion of the instrument is slightly lower in this mode.)

Output signal level selection is made using the upper right rotary control and the rotary attenuator switch. Actual output level can be measured by pushing the PUSH FOR OS-CILLATOR button at the left of the meter. This connects the input metering circuit directly across the output load for precise send-level measurements.

An OFF switch position in the OUTPUT AT-TENUATOR provides a convenient means of making signal-to-noise measurements. In the OFF position the output connector is disconnected from the output power amplifier and connected to a 600 ohm resistor. For added safety, the oscillator circuit is disabled to avoid any chance of signal leak-through.

2.4.1 BALANCED OUTPUT

As an option, the instrument may be provided with a balanced output facility. Two output connectors are provided - a BNC for unbalanced output and telephone style tip-ring-sleeve jack for balanced output. This will permit convenient interface to conventional

patch panels in systems applications. (The T-R-S jack mates with PJ-051 or WE-310 type plugs.)

Three pushbuttons in the OUTPUT section allow choice of output configuration:

- a) BAL/UNBAL sets the output to unbalanced single ended mode or the balanced mode. In the balanced mode, an output transformer is used to provide maximum isolation and true balance. Electronic corrective circuitry (patent pending) significantly reduces the distortion contribution of the transformer.
- b) FLOAT/GROUND. In the unbalanced mode this allows the oscillator to float with respect to instrument (analyzer) ground. In the balanced mode this grounds or floats the transformer secondary center tap.
- c) TERM/UNTERM. In the TERM mode this terminates the output with a 600 ohm load resistor.

2.5 LEVEL MEASUREMENT (VOLTMETER OPERATION)

The 3501 will measure signal level over the frequency range of 10Hz to approximately 300kHz and from +40dBV (100 volts) to -60dBV (1mV) full scale. See Section 2.8 following for signals below -60dBV.

To measure signal level, connect the signal to the appropriate INPUT connector, select LEVEL in the FUNCTION group and turn the INPUT rotary control until the meter reading is on scale. (Note that the HIGH/LOW warning LEDs only function in the DISTORTION mode.)

The actual signal level is determined by adding the meter reading in dBV or dBm to the INPUT control selection. Or, to find the reading in volts, use the 1 or 3 scale on the meter as appropriate and the range indicated by the INPUT control. For example, if the INPUT control is pointing to 0.03, use the 3 scale. If the meter pointer shows 2.3 in this example, the actual level is 0.023 Volts or 23mV.

The input impedance is 100k ohms shunted by 100 pf or less. This presents a sufficiently high impedance load to most circuits to achieve an accurate reading. If the circuit being measured has a high source impedance (over 1k ohm), a correction factor will have to be used due to the loading of the 100k ohm input impedance.

The input preamp contains an active protection circuit which is designed to protect the sensitive input components from signal overload and will cause a fuse to open. Since the instrument must measure very low distortion,

simple conventional protection circuits are not useable and a sophisticated active circuit is employed instead. This circuit achieves all the parameters required but can cause difficulties under a particular (and unusual) circumstance. If the 3501 is turned OFF and connected across a source with a finite output impedance, the 3501 will induce distortion into this source. When the 3501 is not powered, the active protection network ceases to function and the input can look like a non-linear load.

For noise measurements the FILTERS may be used in the LEVEL mode. See Section 2.7 following.

2.5.1 BALANCED INPUT

The model 3501 is equipped with an balanced or differential input. This permits measurement of non-ground referenced sources or balanced sources as found in professional and broadcast applications. Two input connectors are provided - a BNC for the Unbalanced input and a telephone style ring-tip-sleeve jack for the Balanced input. The BNC connector is wired via the normalling contacts of the RTS jack. If no plug is inserted in the jack, one of the differential inputs is connected to the BNC receptacle while the second input is grounded. An instrument input ground post is also provided. (This post is connected to chassis except it floats when the PUSH FOR OSCILLATOR button is pushed.)

An input termination switch is included to allow selection of input impedance. In the down position, the input impedance is 100k ohm to ground in parallel with less than 100 picofarad of capacitance. In the balanced

configuration each input is 100k ohms to ground. With the toggle switch in the UP position, a precision 600 ohm termination resistor is added across the input (balanced) or from input to ground (unbalanced).

This precision 600 ohm termination resistor has a 2 Watt power rating. When selected for termination, the maximum input voltage must be limited to 35 Volts rms (+33dBm) as to not exceed the dissipation limit of this resistor.

2.5.2 HIGH CREST FACTOR RMS MEASUREMENTS

The model 3501 has an automatic crest factor compensation facility. This optimizes the noise floor/crest factor capability trade-off that is always present in level measuring instruments.

If the DISTORTION control is set to -80dB/0.01% or lower, the instrument presumes a low crest factor as would be the

case with a clean sine wave. In this case the signal amplitude in the preamp and following circuits is maximized to provide the best signal-to-noise performance. Conversely, if the DISTORTION control is set to - 70dB/0.03% or higher, the internal signal level is lowered by 10dB giving greater crest factor handling capability.

All of the level correction required for this manipulation is transparent to the user and is handled automatically by the instrument. The only noticeable difference is the absolute level of the two MONITOR outputs which reflect this 10dB change.

If distortion is being measured, the compensation will be automatic. If only signal level is being measured, set the DISTORTION control to -70dB/0.03% or higher if the signal has a crest factor of greater than about 2. An example would be noise, narrow duty cycle pulse waveforms, signals with high value spikes superimposed, etc.

2.6 TOTAL HARMONIC DISTORTION MEASUREMENT

The model 3501 provides a complete THD measurement system by combining a low distortion signal source and an automatic distortion measurement facility. The latter may also be used with an external signal source when required.

When making THD measurements using the internal source, connect the 3501 and device under test as described on page 2.1. (It is good practice to turn the oscillator output level to minimum before connecting.) It is suggested that an oscilloscope be used to monitor the signals and verify the validity of the measurement. This will show any excessive noise, oscillation, interference or other potential source of error in the measurement.

Set the GENERATOR send level to the level required by the device under test using the procedure shown in Section 2.4 previous. Connect the 3501 OUTPUT to the input of the device under test and its output to the 3501 INPUT. (In the case of audio power amplifiers of course, an external 8 ohm load is usually used.)

If it is necessary to first measure the signal level, proceed as in Section 2.5 previous. If not, push DISTORTION in the FUNCTION group. Turn the INPUT rotary control the appropriate direction if either of the HIGH or LOW red LEDs are on. The proper setting is when both of these are extinguished. Next, turn the DISTORTION rotary control until the meter gives an on-scale reading. The instrument will automatically and rapidly null to a final value as the control is rotated counterclockwise.

Observe the distortion residual components at the front panel MONITOR DISTOR-TION connector using an external oscilloscope. A typical waveform is one that has a shape close to the second or third harmonic (or a mixture) of the fundamental (see page 6.6). A dual trace oscilloscope facilitates this observation. If the waveform exhibits a line synchronous component of 50 or 60Hz there is hum pickup in the test set-up. If a 100 or 120Hz component, it probably indicates an insufficiently filtered power supply in the device under test. See Section 2.7 following. Be cautious of high frequency components indicating RF pickup or device oscillation.

When using an external source, the analyzer can be easily tuned using the two LED arrows below the FREQUENCY rotary control. These indicate the direction the rotary control or the pushbutton range switches must be adjusted to properly tune the analyzer. It is only necessary to tune to within about 10% of the input signal to achieve lock and extinguish the lights. Note that the internal oscillator should be turned off (output attenuator counterclockwise) when using an external source to prevent interference due to coupling.

Note that the lowest absolute signal level for distortion measurement is -30dBV/30mV. The lowest effective INPUT control setting is -20dB/100mV. Lower positions of this control (-30 to -60) will not give any increased sensitivity in the distortion mode. If the signal level is too low for distortion measurement (i.e. below -30dBV/30mV) the low red LED will remain on even when the input control is turned fully CCW.

2.7 USE OF FILTERS

The 3501 contains four front panel selectable filters which can enhance the accuracy of many measurements (three are standard, one is optional). For example, if the device under test is picking up mains hum this will influence the measurement and give an erroneous DISTORTION reading. Although it is necessary to be aware of these offending signals, it is useful to be able to separate the DISTORTION and NOISE readings.

400Hz HIGH PASS FILTER (standard)

This is an 18dB per octave (60dB per decade) filter useful to eliminate mains hum and other low frequency noise from the measurement. Its 3dB point or corner frequency is 400Hz and it may be used on signals whose fundamental is above 300Hz or so. It will provide approximately 50dB attenuation of 50 or 60Hz interference.

LOW PASS FILTERS (standard)

These are 18dB per octave (60dB per decade) filters useful to eliminate noise, RF interference, high frequency oscillation and, in general, to reduce the measurement bandwidth to gain a few dB improvement on

the 3501 noise floor. Their 3dB down points are 30kHz and 80kHz respectively. They may be used to improve distortion measurement with fundamentals below about 10kHz with the 30kHz filter and 25kHz with the 80kHz filter.

AUXILIARY FILTER (optional)

A fourth filter position is provided for optional specialized noise weighting. It is accessed by pushing both the 30kHz and 80kHz buttons together. A typical application for this filter would be an ANSI/IEC "A" weighting filter or CCIR noise weighting curve.

All four filter positions are plug-in networks and may be easily user changeable. Each filter socket is identical and may accept any of the standard or custom filters offered by Amber or constructed by the user. (See section 4) The filters are always available in any instrument mode. They should not be used in signal level measurement modes such as frequency response measurements. They may be used for noise measurements or to enhance THD distortion measurement. They should not be used in the IMD distortion mode.

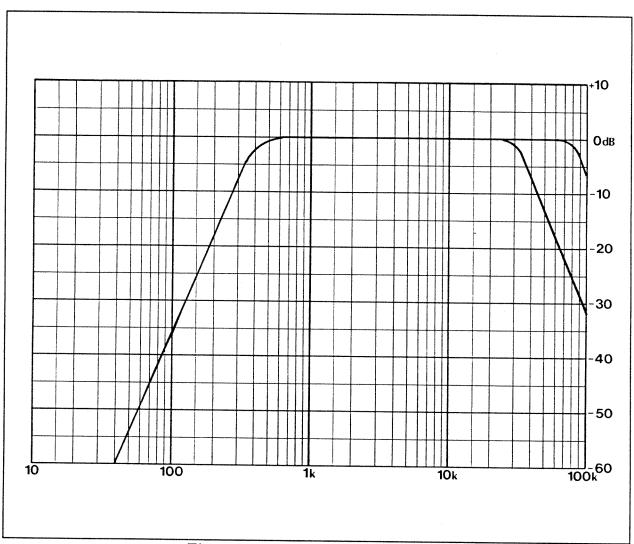


Figure 2.14 STANDARD FILTERS

Illustrated are frequency response plots of the three standard filters supplied: 400Hz High Pass, 30kHz Low Pass and 80kHz Low Pass. Each of the three filters is a 3-pole network giving 18dB per octave roll-off.

The 400Hz filter is useful to remove hum components or low frequency "flicker" noise.

It can be used in THD measurements above about 500Hz. The two low pass filters can reduce high frequency bandwidth for noise measurements or for improved (and valid) THD measurements below approximately 10kHz or 25kHz respectively.

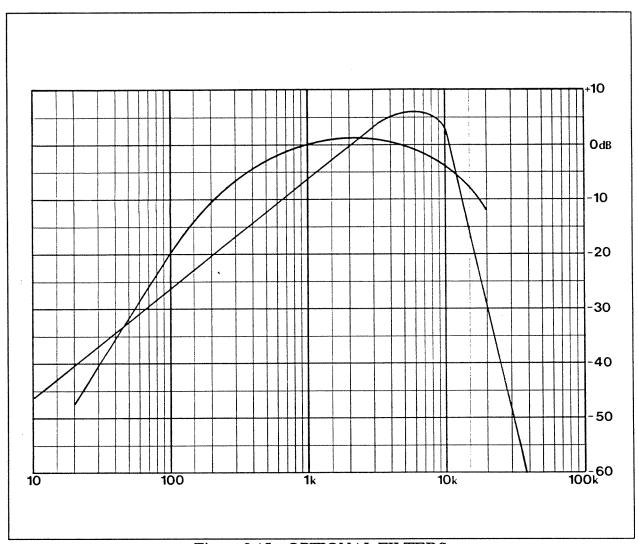


Figure 2.15 OPTIONAL FILTERS

Shown are frequency responses of some typical optional filter networks available. Usually, if one of these is provided, it would be located in the AUX FILTER position. Shown are the ANSI/IEC "A" Weighting curve and the CCIR 468-2 curve. This latter curve may be calibrated for either the 2kHz (DOLBY) reference shown or the 1kHz

reference of the original specifications. (Standard factory calibration is 2kHz.)

These curves are typical of several available to meet various international noise weighting standards used in tape recorder, amplifier and system measurements.

2.8 NARROW BAND LEVEL MEASUREMENTS (Extended sensitivity voltmeter)

A unique and very useful feature of the 3501 is the narrow band level measurement capability. This enhances the signal level measurement capability for several measurement situations such as low level noise, crosstalk, signals near the noise floor and acoustic applications.

When the first two FUNCTION push buttons are pushed IN, a band pass filter is inserted in the level measurement path. This configures the instrument as a frequency selective voltmeter enabling it to read signal or noise level in a particular frequency band. The center frequency of this band-pass filter is selected by the FREQUENCY controls and tracks the generator frequency.

The shape of the filter is nominally about one-third octave (12%). It is constant percentage bandwidth and is a single pole pair configuration. The shape has skirts which asymptote to 6dB. See Fig 2.17. To change the filter bandwidths from about one octave (100%) to sharper than one tenth octave (%) see Section 4.

When using the narrow band mode, both the INPUT and DISTORTION gain controls are effective. The absolute signal level (at the fil-

ter frequency center) is the meter reading plus the INPUT control selection plus the DISTORTION control selection with the following notation. In this mode (as in the DISTORTION mode) the INPUT control has no greater sensitivity than -20dB. That is, the -30, -40, -50 and -60 positions give the same effect as -20. Therefore to measure low level signals first turn the INPUT control to -20 and then the DISTORTION control to the position that gives an on-scale meter reading. For example, if the meter reading is -4.5dBV, the INPUT control is at -20 and the DISTORTION control at -70, the actual absolute signal level is:

Signal level (dBV) =
$$4.5 + (-20) + (-70)$$

= -94.5 dBV

The 3501 can also be configured to be a low pass filter. This is achieved by pushing the first and third FUNCTION buttons. In this mode the corner frequency is set by the FRE-QUENCY controls. The filter has a 12dB per octave roll-off. See Fig 2.18. Level measurement is the same as the BAND PASS mode.

The low pass configuration is particularly useful for noise measurements in a specific bandwidth. For example, to measure the noise in a flat spectrum to say 20kHz just tune the FREQUENCY control to that frequency and proceed as above.

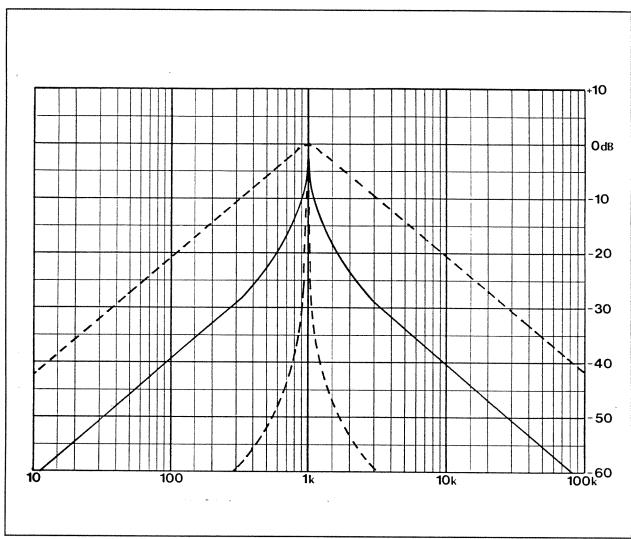


Figure 2.17 BAND PASS RESPONSE

Frequency response of the tunable filter selected by the BAND PASS mode. The filter is shown plotted with a 1kHz center frequency but may be tuned from 10Hz to 100kHz with the same percentage bandwidth or Q. The wide response shown is the lowest

Q available; the narrow response the highest Q (about 1% or a Q of 100). The middle response is approximately 12% (Q of 8.3) and is the response of the filter at factory shipment. See Section 4 for details of alternate bandwidth settings.

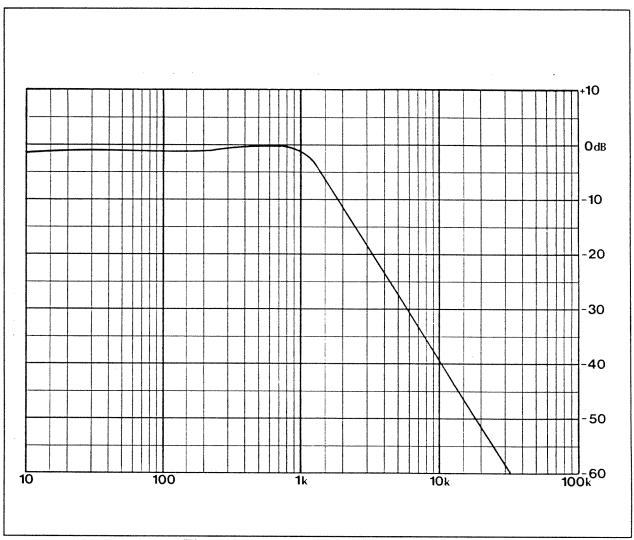


Figure 2.18 LOW PASS RESPONSE

Frequency response of the tunable filter selected by the LOW PASS mode. The filter is shown plotted with a 1kHz corner (-3dB) frequency but may be tuned from 10Hz to 100kHz and retain the same shape. The filter is a 2-pole network giving a 12dB per oc-

tave roll-off. Pass band ripple is 3dB maximum; 2dB typical.

This filter may be used for specified bandwidth signal-to-noise measurements. For example, it may be set to 20kHz for an "Audio Bandwidth" measurement.

2.9 dB RELATIVE MEASUREMENTS

This front panel rotary control can offset the meter readings by up to + or -12dB. Using this control a given level reading can be adjusted to "0dB" so subsequent readings will be in dB, relative to this first one. This control can be used in any mode although in general it will only be used in the LEVEL mode.

For example, to measure frequency response "relative to 1kHz":

- a) Set the generator to 1kHz.
- b) Select LEVEL and make an on-scale reading as described in 2.5 previously.
- c) Adjust the meter pointer to 0dBV or 0dBm using the dB relative control.
- d) Readjust the FREQUENCY control to other frequencies and note the variation in dB relative to 1kHz.

Note that an "UNCAL" red LED will be lit in the meter scale area when the dB relative feature is being used as a reminder to return it to the detented off position after use.

2.9.1 SIGNAL-TO-NOISE MEASUREMENTS

Signal to noise measurements are used to qualify the noise performance of a device under test. They are expressed as a dB figure

relating noise floor to normal signal level -the larger the number, the lower the noise floor and hence the better the performance.

Signal to Noise Measurements (S/N) can be easily made using the 3501. First, it is necessary to establish the signal reference point. This is based on tradition, manufacturers' choice, a particular standard or other source. For amplifiers it is usually the full power level or clipping point. For processing equipment it is usually the operating level or program level (possibly 10 or more dB below clipping). For tape recorders it is the level that produces a particular amount of distortion, perhaps 3% or 1%. Consult the manual for the device under test or the standard to determine the Reference Signal Level.

The second factor is the measurement bandwidth and any possible bandwidth weighting. These factors can have a very significant effect on the measured figure and it is essential to use the specified procedure. For example, tape recorders are usually measured using ANSI/IEC "A" weighting. Amplifiers and signal paths are often measured using a flat "program weighted" or "audio" bandwidth of 20Hz to 20kHz. Virtually all standard weighting characteristics can be produced by a 3501. Some may require the addition of an accessory in the form of a plug-in network. For example, "A" weighting can be provided as a simple module; "audio" bandwidth by the low pass configuration described in Section 2.8.

Having established the proper reference signal level and weighting we can now proceed to the S/N ratio measurement.

Step 1:

With the weighting (Filters) not selected establish the correct Reference Signal Level at the output of the device under test. This may require a Distortion measurement, Wattage measurement or other condition.

Step 2:

With the 3501 in the LEVEL mode, reading this Reference Signal Level, adjust the dB RELATIVE control to obtain a 0dBV (or 0dBm) meter reading.

Step 3:

Turn off the GENERATOR of the 3501 using the OUTPUT ATTENUATOR. Select the appropriate WEIGHTING filter, if required.

Step 4:

Select the LOW PASS function by pushing the first and third FUNCTION buttons. Turn the FREQUENCY control to set the upper cutoff frequency - usually 100kHz or 20kHz.

Step 5:

Turn the DISTORTION control to obtain an on-scale meter reading (without changing the previously set dB relative control).

Step 6:

Add the meter reading on the dBV (or dBm) scale to the dB value on the DISTORTION control to obtain the correct signal-to-noise value.

For example, suppose the Reference Signal Level is established to be +8dBm. The INPUT control is set to +10dB/3V, LEVEL is selected and a meter reading of -2dBm is noted. This reading is changed using the dB relative control to 0dBV, the OUTPUT LEVEL attenuator set to OFF and the required weighting selected. The FREQUENCY is set to perhaps 20kHz and the LOW PASS mode selected. The DISTORTION control is turned until an on-scale meter reading is obtained. If this happens at say -70dB and shows a meter reading of say -4.5dBV, the correct signal-to-noise ratio is -74.5dB.

2.10 MONITOR OUTPUTS

These front panel outputs provide a signal for external observation. They will normally be connected to an external oscilloscope but can also be connected to an external low frequency spectrum analyzer to improve the distortion measurement resolution.

2.10.1 INPUT MONITOR

This output is a scaled representation of the INPUT signal. It is after the input attenuator and presents a signal for an external oscilloscope for fundamental monitoring, trigger purposes, external counter, etc. The output signal level is approximately -10dBV or 300mV for full scale readings in the LEVEL mode and DISTORTION control settings of -80dB/0.01% or lower. For DISTORTION control settings of -70dB/0.03% or higher the signal is 10dB lower (i.e. -20dBV or 100mV). Output source impedance is approximately 600 ohms.

2.10.2 DISTORTION MONITOR

This output is a scaled representation of whatever the meter is indicating. In the LEVEL mode, it is the signal being measured. In DISTORTION it is the distortion residual products. In the NARROW BAND mode (BAND PASS and LOW PASS) it is the filter output. The signal levels are the same as the INPUT monitor described above.

2.11 POWER SUPPLY

The enclosure of the 3501 contains the regulated power supply and optional battery and charger system.

This supply operates from 100, 120, 220 or 240 V AC and produces the two isolated bipolar supply rails required by the instrument. (±15V for the measurement circuits and ±20V for the generator circuits). It contains a high efficiency switching type inverter using state of the art techniques such as VMOS transistors and operates outside the measurement bandwidth (approx. 600kHz) to avoid interference.

The rear panel mounted AC mains connector also houses the mains fuse and a switch to select the appropriate power transformer primary tap to correspond to the AC mains source. See Section 2-1 for instructions on how to use this connector/switch.

2.12 OPTIONAL RECHARGEABLE BATTERY

If this option is supplied, an internal rechargeable battery is provided in addition to the above described power supply.

The supply also includes a battery charging circuit and battery voltage detector circuit. During operation from the battery (or external power source) the 3501 will automatically switch off when the battery (or external source) falls below approximately 9 Volts. This will avoid total discharge of, and consequent damage to, the battery.

A BATTERY TEST push button switch is located on the front panel. This uses the front panel meter to indicate battery voltage. Midscale corresponds to approximately 8V and is indicated by a reading of -4dBV or 2 on the Volts/% scale. A fully charged battery will indicate approximately +1dBV or 3.5 on the V/% scale under load (i.e. 3501 operating).

(With no battery installed, BATTERY TEST will indicate the internal power supply voltage.)

The red POWER ON LED will indicate when the battery life is in the last 10 percent of its range. It will flash at a rate indicating the remaining time starting at a slow rate when about 90% of the battery is consumed and increasing until automatic shut-off.

2.12.1 BATTERY CHARGING CONDITIONS

To charge the battery, connect the external mains transformer (or a user supplied source of 14V AC or 18V DC) to the 3501 power input connector. The battery will charge in 6 to 12 hours with this source and the instrument turned off. It may not charge with the instrument turned on (nor will the battery be discharged). During this charge period, the front panel CHRG LED will light. At the completion of charge, the charger will automatically revert to a float mode and the LED will be extinguished. It can remain in this mode indefinitely.

Do not allow a discharged battery to sit for an extended period (more than a few days) prior to recharging.

2.12.2 BATTERY DISCHARGE CONDITIONS

With option 001, a fully charged battery should give between one and two hours of continuous use before automatic shut off. If it is not used continuously, the total discharge time can be extended beyond this time. Option 002 gives approximately twice this discharge time.

If the instrument is allowed to run until shut off, then left to sit for several hours, it should be possible to obtain additional time before recharging. However, if possible, avoid this procedure as this deep discharge operation will shorten battery cycle life.

Under proper conditions, a single battery will give 300 to 500 or more charge/discharge cycles. Good battery care includes recharging as soon as possible after discharge and avoiding deep discharge conditions (repeated deep discharge prior to recharge).

2.13 IMD Distortion Measurement (OPTIONAL)

Option 006 adds IMD measurement and generation capability. Internal changes include the addition of a second oscillator and the IMD measurement circuits. These additional facilities share the input, output, monitors and metering functions of the basic instrument.

2.13.1 SMPTE/CCIF SELECTOR

The front panel function switch selects one of two IMD modes: SMPTE or CCIF. Select SMPTE by simply pushing the third FUNC-TION button labelled IMD. Select CCIF by pushing the second and third buttons simultaneously. The SMPTE mode involves the use of two sine waves, one a low frequency of 60Hz and the second a high frequency (7kHz for the normal SMPTE specification) mixed in a 4-to-1 amplitude ratio. The CCIF mode involves the use of two high frequency signals with a small frequency separation, for example 10kHz and 10.5kHz.

2.13.2 SMPTE IMD

The 3501 generates the SMPTE type of signal by adding a 60Hz LF sine wave to the existing variable frequency oscillator with the

LF amplitude being 12dB higher than the HF. The frequency of the HF signal is set by tuning the front panel FREQUENCY control. Any frequency in the range from 2kHz to 100kHz may be used including, of course, the 7kHz SMPTE standard. The amplitude of this composite signal is internally calibrated to have the same peak amplitude as the equivalent THD sine wave signal. This peak calibration will ensure no clipping at high signal levels but will show a different RMS value on the LEVEL meter.

Measurement of the distortion of the LF + HF signal is identical to the THD measurement described in Section 2.6 of this manual. The INPUT and DISTORTION controls are set as in THD and the INPUT and DISTORTION MONITOR connectors provide oscilloscope outputs. The FILTERS should not be used in the IMD mode. The Low Pass filters are redundant and will show no significant change. The 400Hz High Pass filter would incorrectly eliminate the distortion components which may appear at 60Hz, 120Hz, etc.

To repeat: use the instrument in the same way as THD but be sure the FREQUENCY is above 2kHz and don't use the filters.

2.13.3 **CCIF IMD**

The 3501 does not generate the complete CCIF test signal alone. This requires the use of two oscillators for a 1-to-1 amplitude mix. The test signals should each have a minimum value of 2kHz and a maximum frequency separation of 1kHz.

To generate the CCIF composite test signal, connect an external oscillator to the rear panel auxiliary input. This source should be adjustable in amplitude and have a nominal amplitude of approximately +12dBm (3V rms) when connected to the 600 ohm load presented by the auxiliary input.

It should have a frequency range of 2kHz to 100kHz. It need not have a low harmonic distortion but should have low hum content. Look at the composite waveform at the OUT-PUT on an oscilloscope. Adjust the amplitude of the external oscillator to just

produce a null in the waveform. (See figure 2.13.3 below.)

This sets the two oscillators (internal and external) to a 1 to 1 amplitude ratio. Note that the peak amplitude of the composite signal is 6dB higher than the single THD signal. This limits the maximum setting of the OUTPUT level control before clipping will occur in the power amplifier. Be careful not to clip the output during measurement - no damage will result but serious errors will occur.

The 3501, when switched to CCIF, will measure the difference frequency component and express this amplitude as a percentage of the RMS sum of the two HF signals. It is somewhat equivalent to a highly sensitive voltmeter with a 1kHz low pass filter at the input. As above, do not use the FILTERS in this mode.

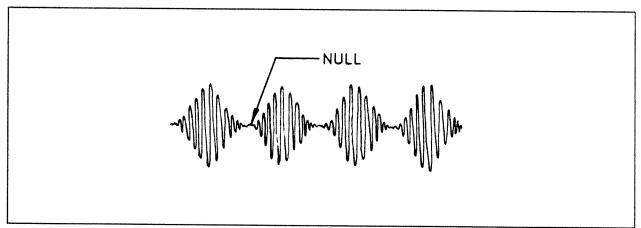


Figure 2.13.3 Setting 1:1 CCIF Composite mix

AMBER model 3501

DISTORTION & NOISE MEASURING SET

OWNER'S MANUAL

SECTION 3

FUNCTIONAL VERIFICATION & PERFORMANCE TEST

Issue 09 April 1988

3. FUNCTIONAL VERIFICATION & PERFORMANCE TEST

3.0 INTRODUCTION

This section contains an instrument functional verification procedure and a detailed performance verification. The functional verification can be used as a quick test of basic operation using a minimum of external equipment. The performance test verifies all specifications and requires specialized, precision equipment of sufficient accuracy to meet the required specifications.

3.1 FUNCTIONAL VERIFICATION

This section describes an abbreviated test sufficient to verify basic instrument function using only an external oscilloscope.

3.1.1 SET UP PROCEDURE

Equipment required:

Dual trace oscilloscope with a bandwidth of 1MHz or greater

2 cables with BNC plugs on each end

Connect trace A input on the oscilloscope to INPUT MONITOR on the 3501. Connect trace B input to DISTORTION MONITOR on the 3501. Set the oscilloscope trigger selection to internal input A.

Set the 3501 FREQUENCY controls to approximately 1kHz (vernier to 10 and range to x100). Set the OUTPUT LEVEL attenuator

to +10 and the vernier to approximately three quarters open (3 o'clock).

Push the INPUT SELECT button in (PUSH FOR OSCILLATOR). Set the INPUT control to +10. Select the LEVEL FUNCTION. The DISTORTION CONTROL should be set to -100/0.001 and all three FILTER buttons released (no filter selected).

Turn the dB RELATIVE control to the CAL position (fully CCW). In the OUTPUT area have all three buttons released, that is, UNBALANCED, GROUNDED, and UNTERMINATED.

3.1.2 OSCILLATOR & LEVEL METER FUNCTIONAL VERIFICATION

With the setup described in 3.1.1 above, turn on the power of the 3501. You should observe a sine wave on the A trace of the oscilloscope of approximately 1kHz and 300mV rms (-10dBV). Trace B will have a similar signal of opposite phase.

Adjust the OUTPUT LEVEL vernier control so the meter indicates 0dB on the top scale (dBm). Turn the FREQUENCY vernier control CCW from 10 to 1 and observe that the sine wave on the oscilloscope changes from approximately 1kHz to approximately 100Hz. Select the three other FREQUENCY ranges (x10, x1k and x10k) and observe appropriate waveforms on the oscilloscope.

Return the FREQUENCY control to approximately 1kHz. Turn the OUTPUT LEVEL attenuator down 10dB to 0dB and the INPUT control also down 10dB to 0dB. The meter should remain on-scale. Progressively select each 10dB lower step on both controls until -60dB is reached and observe that the meter remains on-scale. Set both controls to +20dB and again read an on-scale meter indication. Push the TERM button in the OUTPUT section and observe a reduced meter reading.

3.1.3 FILTER VERIFICATION

This section assumes the three standard filters of 400Hz High Pass, 30kHz Low Pass, and 80kHz Low Pass are installed in the instrument.

Set up the instrument as described in Section 3.1.1 above. Adjust the OUTPUT vernier control for an indication of 0dB on the top scale. Push the 400Hz HP FILTER button and the 30kHz LP FILTER button. Turn the FREQUENCY vernier down to 400Hz and observe that the meter has begun to fall to a lower level. As the FREQUENCY control is lowered below 400Hz, the meter should continue to fall until it will be off-scale below 300Hz.

Change the FREQUENCY to 30kHz and observe a similar performance at 30 kHz and falling to off-scale above 40kHz. Release the 30kHz filter and push the 80kHz filter. Turn the FREQUENCY control to 80kHz and observe a similar roll-off. (Note that the above FILTER verification assumes the instrument is equipped with standard filters.)

3.1.4 TOTAL HARMONIC DISTORTION VERIFICATION

Set up the instrument as described in Section 3.1.1 above. Push the THD FUNCTION button and adjust the DISTORTION control for an on-scale reading. After a few seconds of automatic nulling you should observe a random noise signal on trace B of the oscilloscope. Push the 30kHz FILTER and observe that the high frequency components are removed from trace B on the oscilloscope.

Turn the 30kHz FILTER off (no filters should be selected now). Observe the automatic nulling on the oscilloscope trace B as the FREQUENCY vernier control is turned from 10 to 1. Select each of the other three FREQUENCY ranges and observe that the instrument will null anytime the FREQUENCY vernier control is stopped. It may be necessary to readjust the DISTOR-TION control.

3.1.5 dB RELATIVE CONTROL

Set up the instrument as described in Section 3.1.1 above. Adjust the OUTPUT LEVEL controls for a full scale meter indication (+4dBm on the top scale). Turn the dB relative control noting that any on-scale meter reading can be set (a range of approximately 12dB). Return the dB relative to CAL and adjust the OUTPUT LEVEL vernier to obtain a low scale reading (-8dBm on the top scale). Again, turn the dB relative control and observe that any on-scale indication can be set (a range of approximately 12dB). Return the dB relative control to CAL.

3.1.6 INTERMODULATION DISTORTION FUNCTIONAL VERIFICATION (assumes option 006 is installed)

Set up the instrument as described in Section 3.1.1 above. Push the IMD function and set the FREQUENCY range to x1k (for a frequency of approximately 10kHz). Observe a composite waveform on trace A of the oscilloscope consisting of an LF component of approximately 60Hz and an HF component of

one quarter peak amplitude and approximately 10kHz. Trace B will be an IMD residual with dominant low frequency energy. Turn the DISTORTION control to -90dB and observe an on-scale reading (typically -2dB on the second scale, i.e. -92dB).

3.2 PERFORMANCE TEST

3.2.1 INTRODUCTION

The following procedure is intended to be used to verify the performance to specification of an Amber model 3501 Distortion and Noise Measuring Set. All tests can be performed without access to the interior of the instrument.

3.2.2 EQUIPMENT REQUIRED

FUNCTION	CHARACTERISTICS		
Calibrator, AC	Frequency range: 10Hz to 100kHz Level range : 100V to 1 mV Level accuracy : ± 0.2%		
Spectrum Analyzer, low frequency	Frequency range : 10Hz to 500kHz Minimum bandwidth : 3Hz		
Oscilloscope, dual trace	Bandwidth : 10MHz		
Level meter, AC rms	Bandwidth : 10Hz to 500kHz Dynamic range : 100 V rms to 1mV rms Readout : Volts, mV, µV and dBV or dBm Accuracy : ±0.10dB at 1kHz and 1V Resolution : ±0.01dB		
Frequency Counter	Frequency range: 10Hz to 500kHz		
Low Distortion Oscillator	Frequency range: 10Hz to 100kHz Residual THD: <-102dB 50Hz to 5kHz <-85dB 10Hz to 100kHz Source impedance: 600 ohm ±1%		
Low Distortion Analyzer	Frequency range : 10Hz to 100kHz Residual THD: <-102dB 50Hz to 5kHz <-85dB 10Hz to 100kHz		
Power Supply	0 to ±30V DC at 0.5A		
Resistors	59k0 ±1% metal film		

3.2.3 OSCILLATOR LEVEL VERIFICATION

Connect an AC level meter to the oscillator unbalanced output (BNC connector). Set the external level meter sensitivity to approximately 15V rms full scale or greater. Set the 3501 frequency dial to 1kHz (10 on the vernier and x100 range). Turn the output attenuator control fully clockwise (max.). Turn the variable output level control fully clockwise. Observe an output level of 11V rms or greater.

3.2.4 OSCILLATOR FLATNESS VERIFICATION

Connect the AC level meter as described in 3.2.3 bove. Adjust the output variable and step level controls to produce a reading of 1.00V or 0.0dBV on the external AC meter at 1kHz. Change the frequency of the oscillator to each of the frequencies in the table below and observe the signal level (either dB or V).

FREQUENCY	LEVEL METER READING		
	dBV	Volts	
1kHz 10Hz 20Hz 10kHz 20kHz 100kHz	0.0dB (ref) -0.2dB to +0.2dB -0.1dB to +0.1dB -0.1dB to +0.1dB -0.1dB to +0.1dB -0.2dB to +0.2dB	1.00 V (ref) 980mV to 1.020V 990mV to 1.010V 990mV to 1.010V 990mV to 1.010V 980mV to 1.020V	

3.2.5 OSCILLATOR FREQUENCY ACCURACY

Connect a frequency counter to the oscillator unbalanced output. Set the oscillator to an output level of approximately 1 V. Set the frequency controls on the 3501 to each of the frequencies in the following table and observe the frequency indication on the external frequency counter.

FREQUENCY	DIAL	RANGE	EXTERNAL INDICATION
10Hz	1	x10	9.0 to 11.0 Hz
50Hz	5	x10	45 to 55 Hz
100Hz	10	x10	90 to 110 Hz
100Hz	1	x100	90 to 110 Hz
500Hz	5	x100	450 to 550 Hz
1kHz	10	x100	900 to 1100 Hz
1kHz	1	x1k	900 to 1100 Hz
5kHz	5	x1k	4500 to 5500 Hz
10kHz	10	x1k	9.0k to 11k Hz
10kHz	1	x10k	9.0k to 11k Hz
50kHz	5	x10k	45 k to 55k Hz
100kHz	10	x10k	90k to 110k Hz

3.2.6 OSCILLATOR TOTAL HARMONIC DISTORTION

Note: This test requires a known high performance distortion analyzer. The analyzer section of the 3501 may be used provided its residual distortion performance is within specifications.

Select OSCILLATOR as input to the analyzer section of the 3501. Set the OUT-PUT attenuator to + 10 and the variable control approximately three quarters clockwise. Select + 10dB on the INPUT control and select LEVEL. Choose a frequency of 1kHz. The meter should show an on-scale reading. Adjust the output variable control so the meter is close to full scale (i.e. 0dB). Set the DISTORTION control to -70dB.

Connect the spectrum analyzer to the DIS-TORTION monitor connector. Set up the spectrum analyzer to sweep a range of approximately 0 to 10kHz. Adjust the spectrum analyzer sensitivity and bandwidth controls to produce a clear presentation of the 1kHz signal.

Push the THD button on the 3501. Do not select any filters. Turn the DISTORTION control down until an on-scale reading is obtained. (The meter may bounce as the con-

trol is turned indicating the automatic nulling activity.) The DISTORTION control will typically be at the -80 or -90dB (0.01% or 0.003%) range. Do not use the -100dB range.

Without changing the controls on the spectrum analyzer, perform a second analysis. This will now show some components at the second and third harmonics. Note the level of each of these relative to the previous analysis of the fundamental. To this relative difference add the position of the DISTORTION control. For example, if the first reading on the spectrum analyzer of the fundamental (1kHz) was -5dB and the second measurement showed a second harmonic amplitude of -25dB with the DISTORTION control at -90dB, then the second harmonic level relative to the fundamental is:

$$(-25dB) - (-5dB) + (-90dB) = -110dB$$

Calculate the amplitude of the third harmonic in the same way. The amplitude of both harmonics should be below the levels shown in the following table. Repeat the above procedure for each frequency listed, using an appropriate sweep range.

FREQUENCY	HARMONIC LEVEL	
10Hz	<-96 dB	
50Hz	<-102 dB	
5kHz	<-102 dB	
10kHz	<-96 dB	
50kHz	<-90 dB	
100kHz	<-84 dB	

3.2.7 LEVEL METER ACCURACY

Connect the AC calibrator to the 3501 INPUT. Select the external input on the 3501 (button out). Select the LEVEL mode and turn off all filters. Set the DISTORTION control to -80dB (0.01%).

The level accuracy and frequency response (flatness) will be tested at several frequencies and signal levels. For each test, select the required signal level and frequency on the AC

calibrator and set the corresponding INPUT control on the 3501. (It is not necessary to set the FREQUENCY controls on the 3501.) Each test should produce a nominal full scale meter indication. Using the dBV scale, a perfect result will show "0dB" on the scale. The table below shows the allowed deviations from this 0dB scale indication for each frequency and level.

3.2.8 METER ACCURACY

Using the same set up as in Section 3.2.7 above, verify intermediate meter levels using the following table. Set the INPUT control to $+10 \, \text{dBV}$. Set the AC calibrator to 1kHz and $+10 \, \text{dBV}$ (3.16V). The 3501 meter should indicate 0.0dB $\pm 0.2 \, \text{dB}$. Repeat for each value in the table.

INPUT LEVEL	METER INDICATION
+ 10dBV/3.162 V	+ 0.2dB to -0.2dB
+ 8dBV/2.512 V	-1.8dB to -2.2dB
+ 6dBV/1.995 V	-3.8dB to -4.2dB
+ 4dBV/1.585 V	-5.8dB to -6.2dB
+ 2dBV/1.259 V	-7.8dB to -8.2dB

3.2.9 FILTER ACCURACY

Select the internal oscillator as the INPUT to the 3501. Set a frequency of approximately 5kHz, LEVEL mode, OUTPUT level and INPUT level controls set to +10dB. Connect a frequency counter to the INPUT monitor and an AC level meter to the DISTORTION monitor output. With no filters selected, adjust the output variable level con-

trol for a convenient reference level on the external meter (e.g. 0dB). Select the 400Hz high pass filter and adjust the frequency control (near 400Hz) for a new level reading exactly 3dB below the previous reading. Note the frequency. Repeat for the 30kHz and 80kHz filters referring to the following table for acceptable limits.

FILTER	FREQUENCY RANGE FOR -3dB	
400HP 30kHz LP	380Hz to 420Hz 28.5kHz to 31.5kHz	
80kHz LP	76kHz to 84kHz	

3.2.10 FUNDAMENTAL REJECTION & RESIDUAL DISTORTION VERIFICATION

Note: This test uses the internal oscillator as a signal source. For this procedure to be valid, the internal oscillator must have a THD within its specified limits.

Select the internal oscillator as input to the 3501 analyzer. Connect the DISTORTION monitor output to the external spectrum analyzer. Set the OUTPUT and INPUT attenuator to +10dBV. Select the LEVEL mode, no filters and a frequency of approximately 1kHz. Adjust the output variable control for a near full scale meter reading (0dB). Set the DISTORTION control to -70dB range.

Set the controls on the external spectrum analyzer to obtain a CRT presentation of the fundamental. Note the amplitude of this signal.

Select THD on the 3501 and turn the DISTORTION control for an on-scale reading (typically -80 or -90dB). Do not use the -100dB range.

Make a new measurement on the spectrum analyzer noting the level of the fundamental, the second and the third harmonic. Compare these levels to the previous fundamental reference level and add the value of the DISTORTION control. For example, if the initial reference measurement produced a fundamental value of -10dB while the second measurement produced values -30, -20 and -25dB for fundamental, second and third

harmonic respectively and the distortion control is set to - 90dB then the level of each component is:

Fundamental : (-30dB) - (-10dB) + (-90dB) = -110dB

Second harmonic : (-20dB) - (-10dB) + (-90dB) = -100dB

Third harmonic : (-25dB) - (-10dB) + (-90dB) = -105dB

Repeat this procedure for each of the frequencies shown in the table below and verify that the fundamental and harmonic ratios are equal or better than the values shown.

FREQUENCY	VERNIER -	RANGE	FUNDAMENTAL HARMONIC	2nd HARMONIC	3rd HARMONIC
10Hz	1	x10	-100dB	-96dB	-96dB
50Hz	2	x10	-105dB	-102dB	-102dB
5kHz	5	x1k	-105dB	-102dB	-102dB
10kHz	10	x1k	-100dB	-96dB	-96dB
50kHz	5	x10k	-90dB	-84dB	-84dB
100kHz	10	x10k	-90dB	-84dB	-84dB

3.2.11 DISTORTION MEASUREMENT ACCURACY

Connect the outputs of the internal 3501 oscillator and an external oscillator with the combining network shown in Fig 3.2.11. This will produce an artificial "distorted signal" of known magnitude.

Set the 3501 to 1kHz, select external input, set the output attenuator to +10dB and the input attenuator to +10dB. Select LEVEL mode and adjust the output variable control for a +10dBV (i.e. 0dB on the meter scale) reading.

Adjust the external oscillator for a level of -10dBV as read on the external oscillator level meter and a frequency of 10kHz. With the combining resistors, this will produce a "distortion" signal 60dB (or 0.1%) below the fundamental.

With no filters selected, select THD on the 3501 and turn the DISTORTION control to -60dB (0.1%). The meter should indicate 0dB 1dB. Without changing any controls on the 3501, change the frequency of the external oscillator to those indicated in the table below and observe the meter readings.

EXTERNAL OSCILLATOR FREQUENCY	DISTORTION METER READING	
10Hz	-58dB to -62dB	
20Hz	-59dB to -61dB	
500Hz	-59dB to -61dB	
5kHz	-59dB to -61dB	
20kHz	-59dB to -61dB	
50kHz	-58dB to -62dB	
100kHz	-57dB to -63dB	
300kHz	-57dB to -63dB	

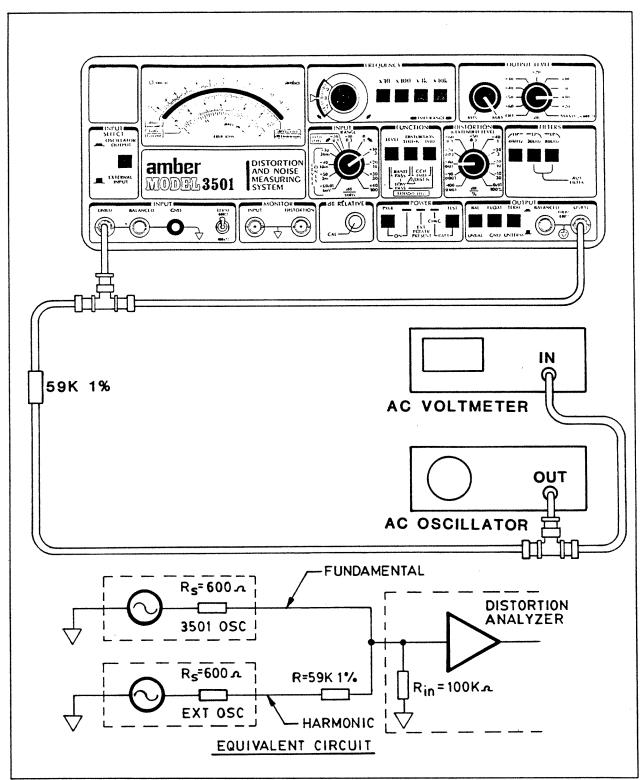


Figure 3.2.11 Harmonic Accuracy Test

3.2.12 RESIDUAL NOISE

Connect a shielded 600 ohm terminating plug to the 3501 INPUT BNC connector. Select the LEVEL mode, no filters and external input. Turn off the internal oscillator by turning the OUTPUT attenuator fully counterclockwise to OFF. Turn the INPUT control fully counterclockwise to -60dBV and observe an off-scale meter reading indicating a noise level below -70dBV.

Select BAND PASS mode, set the INPUT control to -20dBV and the FREQUENCY to 1kHz. Turn the DISTORTION control to a

level that produces an on-scale meter reading. The absolute level is the meter reading plus the distortion control setting plus the INPUT control setting. For example, with a meter reading of -6dB, a distortion setting of -90dB and the input set to -20dBV, the noise level is:

$$(-20) + (-90) + (-6) = -116$$
dBV

The reading at 1kHz should be -100dBV or lower. Repeat the measurement at 100kHz and obtain a reading below -90dBV.

3.2.13 DISTORTION FREQUENCY ACCURACY

The distortion analyzer has an electronic fine tuning system that automatically adjusts its internal tuning circuits over a limited range. For these automatic tuning circuits to function, the signal should be within approximately $\pm 10\%$ of the frequency dial setting. This is indicated by tuning error lights below the frequency dial. When the tuning lights are on, the signal may be greater than the pull-in range of the auto-tune circuits.

To verify frequency accuracy, signals of known frequency are sent to the 3501 and the frequency dial on the 3501 is set to these frequencies. Under these conditions, the tuning error lights should not illuminate and the auto-null circuit should function.

Connect an external oscillator to the INPUT of the 3501. Set a level of 1V on the external oscillator and set the INPUT control to 0dB/1V. Monitor the frequency of the external oscillator using a frequency counter. Connect an oscilloscope to the INPUT and DISTORTION monitor outputs to observe nulling action.

Set the 3501 frequency control to 1kHz and select the THD mode. Set the frequency of the external oscillator to 1000Hz and observe that the tune error lights do not illuminate and automatic nulling occurs. Repeat for all frequencies in the following table:

EXTERNAL OSCILLATOR FREQUENCY		REQUENCY ETTING
10Hz	1	x10
50Hz	5	x10
100Hz	10	x10
500Hz	5	x100
1kHz	10	x100
5kHz	5	x1k
10kHz	10	x1k
50kHz	5	x10k
100kHz	10	x10k

3.2.14 DISTORTION INPUT LEVEL REQUIREMENT

Set up the 3501 to measure THD of its internal oscillator at 1kHz. Observe a correct distortion measurement by connecting an oscilloscope to the two MONITOR outputs.

Select the LEVEL mode and set the oscillator to produce a level of - 30dBV (30mV). Select THD again and observe that the UNDER level error light does not illuminate and a THD reading is obtained.

3.2.15 DC ISOLATION CHECK

The 3501 has a floating oscillator and an AC coupled differential input. Both the oscil-

lator and the inputs can have a DC float potential of $\pm 30V$ above chassis.

Connect the oscillator output to the differential input of the 3501 as shown in Figure 3.2.15. Push the FLOAT button to isolate the oscillator from chassis. Select a 1V, 1kHz level on the oscillator, LEVEL mode on the analyzer. With the INPUT control at 0dBV/1V a full scale meter reading should be provided.

Connect a variable power supply between chassis and the low terminal of the oscillator. Observe as the power supply is adjusted from 0 to ± 30 V, no change is seen in the 3501 meter reading.

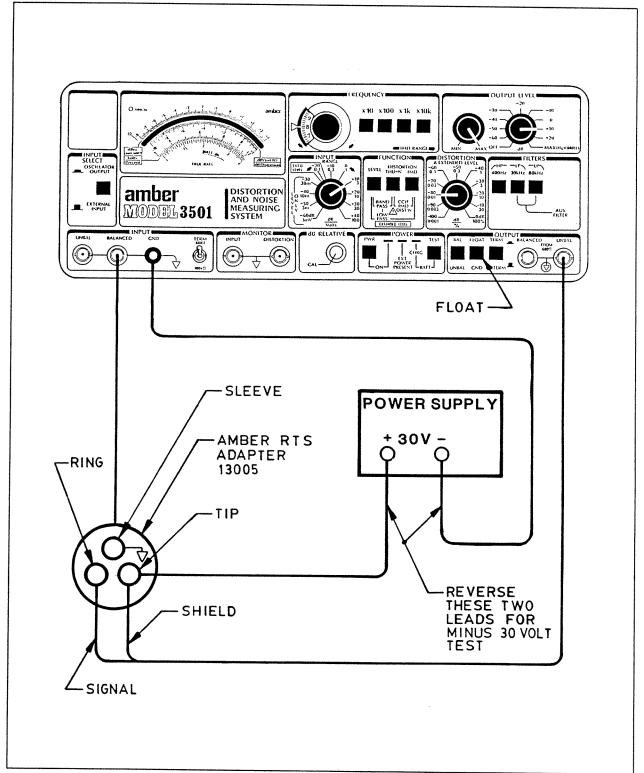


Figure 3.2.15 DC Isolation Test

AMBER model 3501

DISTORTION & NOISE MEASURING SET

OWNER'S MANUAL

SECTION 4

MODIFICATIONS & CUSTOM NETWORKS

Issue 09 April 1988

4. MODIFICATIONS & CUSTOM NETWORKS

4.0 INTRODUCTION

The 3501 has some provision for user modification for particular applications. Most of these changes must be done by a qualified technician and it is assumed care will be exercised. Before proceeding with this section, refer to Section 6 and read the cautions regarding static sensitive devices and the 3501 disassembly procedure.

4.1 BAND PASS FILTER "Q" ADJUSTMENT

The 3501 may be onfigured as a frequency selective voltmeter by selecting the BAND PASS mode. This is done by pushing the first two FUNCTION buttons.

The BAND PASS mode inserts a variable frequency active band pass filter in the level measurement circuit. The filter is a State Variable type and is constant percentage bandwidth. This means the shape of the filter plotted on a log frequency axis will remain the same at any frequency.

The instrument is normally shipped with the filter set to a bandwidth of approximately 12%. This translates to a Q of 8.3 and means the filter will have -3 dB points separated by 120Hz when the center frequency is 1kHz.

By changing the value of one resistor the bandwidth of the filter may be varied over a range of approximately 100% to less than 1%.

The filter has been configured so that as the bandwidth is changed the pass band gain (gain at the center frequency) will remain essentially constant at unity. In fact, within the filter itself lower bandwidths (higher O) mean higher filter gain. At 1%, the effective internal filter gain exceeds 40dB although the actual instrument pass band gain is approximately -3dB. (At higher Q values, the center frequency gain suffers a slight attenuation.) This additional gain means a higher equivalent input noise when in the BAND PASS mode. It is equivalent to additional gain in the preamp as selected by the INPUT control. This noise will appear on the DIS-TORTION MONITOR output and may look like oscillation. It is in fact front end noise filtered by a sharp band pass filter and will therefore exhibit noise predominantly at the setting of the FREQUENCY control.

Note that the filter retains the automatic tuning capability of the notch configuration used in the THD mode. Thus, it will try to lock on to an incoming signal within its $\pm 10\%$ capture range. This will simplify most measurements and relieve the difficulty of trying to manually tune an extremely sharp filter. However, it will also mean it is almost impossible to plot the frequency response of the filter since it will try to automatically track an incoming sweep. See the details on SERVO INHIBIT below if it is desired to suppress this automatic tuning.

4.1.1 FILTER Q MODIFICATION

Resistor R2045 located on the top (FIL-TER/OSCILLATOR) board is the one to be changed to effect modification of Q. Its effective value is that of this resistor in series with the Rds ON of FET Q2077. As shipped, its value is 620 ohms resulting in a bandwidth of approximately 12%. The resistor may take values of infinity to zero ohms resulting in bandwidths of 100% to less than 1%. See Figure 4.1 for frequency response plots of various bandwidths. For sharper bandwidths (higher Q) the resistor must be decreased. The safest way to do this is to solder a resistor in parallel with the existing 620 ohm part. If the resistor must be removed, use caution to avoid damaging the circuit board.

A pot may be used to provide an adjustable bandwidth. For best results, use a 10k ohm reverse log taper. It may be mounted on the front panel to the left of the meter.

4.2 FILTER SERVO INHIBIT

The state variable filter used in the THD measurement section and the BAND PASS and LOW PASS modes has an automatic frequency tuning adjustment. This is one of the two servos used to automatically null the notch filter in THD. This frequency adjust servo will automatically tune the filter if a single input signal is within $\pm 10\%$ of the manual FREQUENCY setting.

There may be some applications where this automatic tuning is undesirable. For example, in the BAND PASS mode if it is desired to set the center frequency of the filter with the FREQUENCY knob and not have it drift to a nearby frequency trying to lock on to an input signal. To achieve this, the servo may be disabled to cause the filter to find its mean (panel dial) value. Of course, the servo must be enabled again in the THD mode or nulling will not take place.

To disable the frequency tuning servo, short out capacitor C2019 or short PIN 2 to Pin 6 of U2006. This may be done with a switch but the leads to the switch must be short (less than 10 inches). A switch could be mounted on the front panel to the left of the meter.

4.3 IMD LOW FREQUENCY CHANGE

If option 006 is provided, a second low frequency oscillator is contained on the option circuit board located on the bottom chassis. The frequency of this oscillator is nominally set to 60Hz but can be changed over the range of approximately 10Hz to 500Hz.

Two resistor values must be changed to set a new frequency. These resistors are R604 and R605 on assembly 3501-460-02. They follow the relationship:

$$FREQUENCY = \frac{10^6}{1.38 R}$$

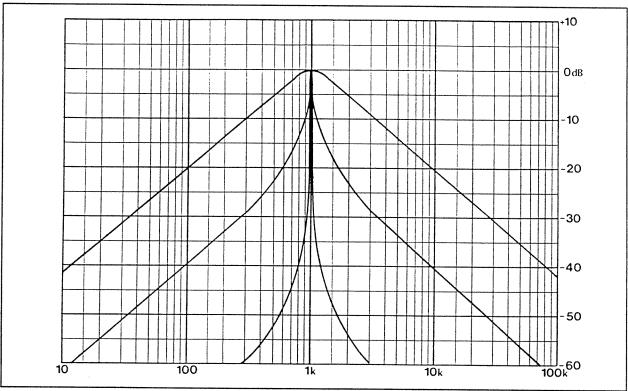


Figure 4.3 Band Pass Filter

Shown are typical frequency responses of the BAND PASS filter for various values of R2045. The widest response is a Q of 1 or percentage bandwidth of 100% with a resistor value of infinity (no resistor installed).

The center response is a Q of 8.3, bandwidth of 12% and resistor of 620 ohms. This is the standard response shipped from the factory. The narrowest response is a Q of 100 or more, bandwidth of 1% or less and is ob-

tained with a resistor value of 0 ohms (plus inherent resistance of FET).

As shipped, they are 12.2k ohm giving a frequency of 60Hz. For 10Hz use 71.5k and for 500Hz use 1.43k ohm. A dual ganged 50k ohm pot may be used to provide a variable frequency. There is provision for a four pin connector, J601, to handle an external control.

4.4 NOISE WEIGHTING FILTERS

The 3501 has provision for up to four noise weighting filter networks. Three are provided as standard and the fourth position is available for optional filters. This section contains details on how to construct filter networks to be used for noise weighting in the 3501. Note that all four filter positions may be installed in any position. The only caution is to observe the pin number orientation during installation.

4.4.1 GENERAL

Amplitude or Level measurements are generally made with a wide-band level meter which treats all signals in the frequency band of interest with equal weighting. That is, the frequency response of the meter is essentially flat over the measurement band. There are occasions, however, where it is desirable to restrict the bandwidth of the measuring circuits. Two common reasons are to reject noise or other unwanted signals and to better tailor the measurement to the subjective response of the human ear.

Examples would be: measurement of a signal in the presence of hum, reduction of

measurement bandwidth from say 1MHz to 20kHz, removal of a noise component from a distortion + noise measurement and measurement of noise performance to some noise weighting standard. This latter example results from the response of the human ear. At low sound pressure levels, the ear (or more correctly, the subjective realization of sound) is less sensitive to low and high frequencies. Noise in an electronic system is usually at a low level compared to signal. Thus, the ear would be less sensitive to a low or high frequency low level noise than a low or high frequency high level signal. Weighting curves approximating the ear's response have been developed. They are specified in standards available from ANSI, IEC and others. (See "A" Weighting following.)

Bandwidth restriction is very necessary for proper noise measurements. For "flat" noise (white noise) the noise level is proportional to the square root of bandwidth. Therefore, a preamplifier, for example, with a reasonably flat noise spectrum (not dominated by hum, crosstalk, etc.) will exhibit vastly different noise performance when measured with a wide band AC voltmeter with a 1MHz bandwidth versus a voltmeter with a 20kHz bandwidth. It is therefore imperative that measurement bandwidth be specified with noise figures. It is equally imperative that the correct bandwidth or weighting be used in the measuring instrument when readings are to be repeated with consistency. If a manufacturer specifies the noise of his amplifier in a 20kHz bandwidth the user must use this bandwidth to verify proper performance.

4.4.2 CONSTRUCTION OF CUSTOM NETWORKS

Several types of standard filters are described here along with details of how to determine component values to provide specific parameters. In addition to the networks presented here several others may be derived using classic filter design technique and implemented in a similar fashion. The configuration of the filter sockets, dedicated op amp and terminations provide near ideal filter conditions: low source impedance, extremely high op amp input impedance and wide op amp bandwidth.

For best results resistors should be 1/4 watt metal film with 1% tolerance, capacitors should be ceramic, plastic film or mica with 5% or better tolerance.

4.4.2.1 3rd Order Butterworth HIGH PASS and LOW PASS filter Networks

Three pole filters may be realized by using three resistors and three capacitors as shown in the instructions.

The component location determines the filter character while its value, the -3dB point.

Capacitor values should lie between 200 pf and 0.5 µf while resistor values should be between 1k ohm and 500k ohm. Values for several frequencies are shown. Component values for other frequencies can be found by interpolation or extrapolation or using the 1Hz values and the following procedure:

LOW PASS

Divide the capacitor values shown by the desired -3dB frequency (f_c). If the resulting capacitor values are too small multiply each by a constant and divide the 10k ohm resistor value by the same constant. If the capacitor values are too large divide each by a constant and multiply the 10k ohm resistor values by the same constant.

HIGH PASS

Divide the resistor values shown by the desired -3dB frequency (f_c). If the resulting resistor values are too small multiply each by a constant and divide the 0.01 µf capacitor value by the same constant. If the resistor values are too large divide each by a constant and multiply the resistor values by the same constant.

EXAMPLE

Suppose we want a 60Hz high pass filter:

$$C1 = C2 = C3 = 0.01 \mu f$$

DISTORTION & NOISE MEASUREMENT SET Section 4

AMBER model 3501 Owner's Manual

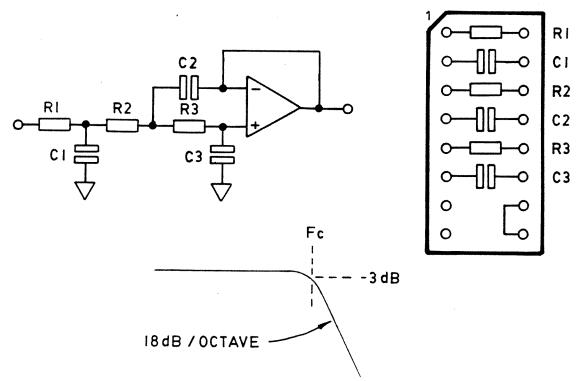
R2 is over 1M ohm and should be scaled to about 20% of this value. Choosing a standard value capacitor of 0.047 μ f or 4.7 times the previous value we divide all resistors by 4.7 to arrive at the final values:

$$C1 = C2 = C3 = 0.047 \, \text{uf}$$

R2 = 1.310M divided by 4.7 = 279K ohm

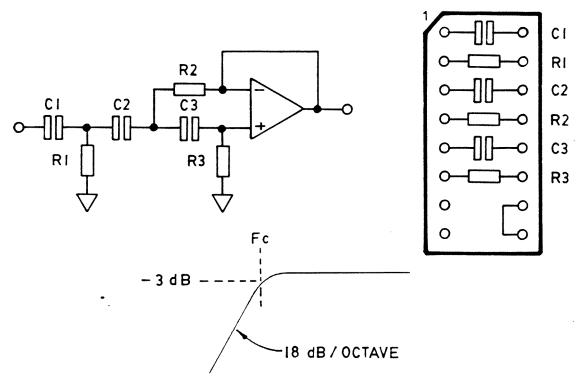
Note: when soldering to the 16-pin dual-inline headers, use caution not to melt the plastic. Install the header in a 16-pin socket clamped in a vise to hold the pins straight during soldering.

4.4.2.2 ANSI/IEC "A" WEIGHTING

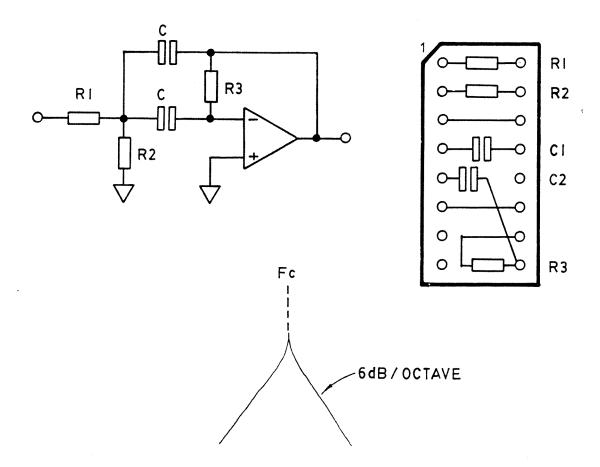

Details are also provided for construction of networks to provide curves conforming to the ANSI/IEC "A" Weighting specification.

This curve conforms to ANSI specifications S1-4-1971 "Specifications for Sound Level Meters"; IEC Recommendation of Publication 123, First Edition 1961 "Recommenda-

tion for Sound Level Meters" and Publication 179 Second Edition 1973 "Precision Sound Level Meters".


"A" Weighting is typically used for tape recorder signal-to-noise measurements and acoustic noise measurements.

3 POLE LOW PASS FILTER


F _c	C ₁	C ₂ 0.12 μf 0.056 μf	C ₃ 0.0068 μf 3300 pf	$R_1 = R_2 = R_3$ 47k5 ohm
100Hz	0.047 μf 0.022 μf			
1kHz				10k0 ohm
10kHz	2200 pf	5600 pf	330 pf	10k0 ohm
20kHz	2200 pf	5600 pf	330 pf	4k99 ohm
30kHz	2200 pf	5600 pf	330 pf	3k32 ohm
50kHz	2200 pf	5600 pf	330 pf	2k00 ohm
80kHz	2200 pf	5600 pf	330 pf	1K24 ohm
100kHz	2200 pf	5600 pf	330 pf	1k00 ohm
1kHz	22.15 pf	56.44 pf	3.221 µf	10k ohm

3 POLE HIGH PASS FILTER

	COMPONENT VALUES FOR HIGH PASS FILTER					
F _c	R ₁	R ₂	R ₃	$C_1 = C_2 = C_3$		
20Hz	26k1 ohm	10k2 ohm	178k ohm	0.22 μf		
30Hz	17k4 ohm	6k81 ohm	118k ohm	0.22 μf		
50Hz	48k7 ohm	19k1 ohm	332k ohm	0.047 μf		
100Hz	24k3 ohm	9k53 ohm	169k ohm	0.047 μf		
400Hz	28k7ohm	11k3 ohm	196k ohm	0.01 μf		
1kHz	22k6 ohm	8k87 ohm	158k ohm	0.005 μf		
10kHz	24k3 ohm	9k53 ohm	169k ohm	470 µf		
1Hz	11M43 ohm	4M49 ohm	78M63 ohm	0.01 μf		

SINGLE POLE PAIR BANDPASS FILTER

For Gain at
$$F_c = -1$$
 $R_3 = 2R_1$

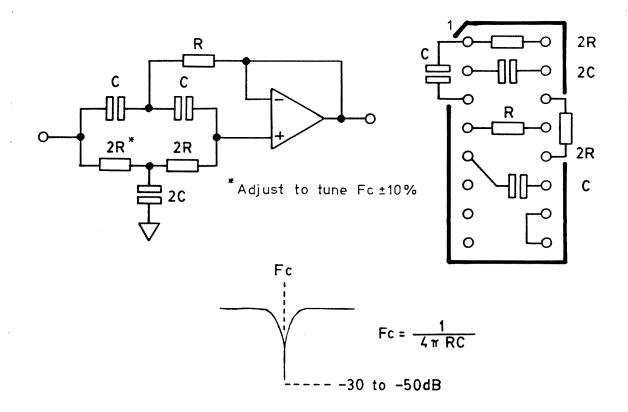
$$Filter Q = F_c R$$

Filter Q =
$$\frac{FcR_3C}{2}$$

$$F_c = \frac{1}{\pi} \frac{R_1 + R_2}{2R_1^2 C^2 R}$$

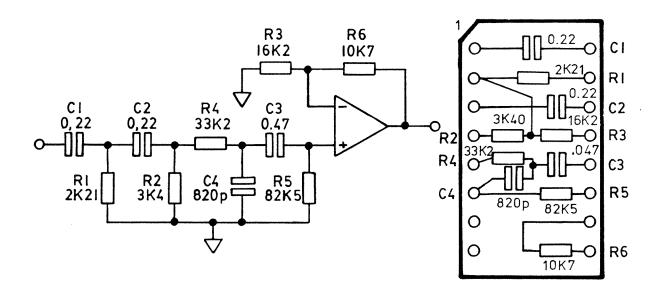
Example: For
$$Q = 10$$

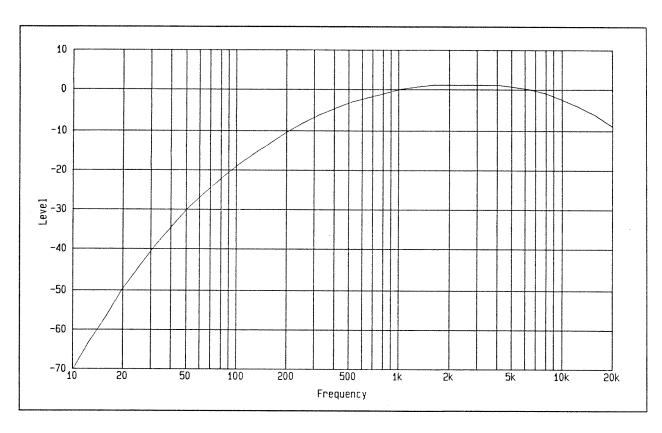
$$F_c = 1kHz$$


$$C = 0.1 \,\mu f$$

$$R_1 = 10k \text{ ohm}$$

$$R_2 = 530 \text{ ohm}$$


$$R_3 = 200k \text{ ohm}$$


2 POLE "TWIN TEE" BAND REJECT FILTER

F _c	R	2R	C	2C
60Hz	26k7 ohm	56k6 ohm	0.05 μf	0.1 μf
20Hz	13k3 ohm	26k7 ohm	0.05 μf	0.1 µf
100Hz	20k0 ohm	39k2 ohm	0.01 µf	0.02 μf
kHz	15k8 ohm	31k6 ohm	0.005 µf	0.01 µf
0kHz	2k43 ohm	4k87 ohm	3300 pf	6800 pf

ANSI-IEC A WEIGHTING FILTER

AMBER model 3501

DISTORTION & NOISE MEASURING SET

OWNER'S MANUAL

SECTION 5

THEORY OF OPERATION

Issue 09 April 1988

5.0 THEORY OF OPERATION

This section describes the various circuits used in the 3501 as a guide to circuit operation and to assist in troubleshooting. Reference should be made to Section 8, Schematic Diagrams. The second digit of each subsection in this Theory of Operation identifies the schematic being described. For example, subsection 5.4 Weighting Filters describes schematic 4.

Additional relevant details are provided in Section 6, Maintenance and Calibration and Section 7, Parts List.

5.1 INPUT ATTENUATOR & PREAMP

The signal connected to the front panel connectors appears at J1003 as one input of S1009, the input selection switch. The second input appears on J1009 and comes from the internal oscillator. S1009 selects one of these two possible signals to be the input to the distortion and level measurement circuitry.

The selected input is coupled via input coupling capacitors, C805 and C806. This signal appears on the input attenuator formed by the resistor string of R1065, R1062, R1061, R1067 and R1059 for one input and the second input on R1069, R1070, R1071, R1072 and R1073. These sets of resistors form voltage dividers to provide the input attenuator function. Their values are chosen to provide an input impedance of 100k ohm to ground and voltage division steps of exactly 10dB. The additional resistors and capacitors connected across this series string of resistors is used to provide high frequency compensation to cancel the effects of stray capacitance in the switches.

S1002A and S1002B is an eleven position rotary switch which selects the appropriate input level from the input attenuator. In the unbalanced case, the signal from the output of S1002A is coupled via resistor R1075 and bulbs F1001 and F1002 to the input preamp. The resistor provides current limiting protection and the bulbs protect the input preamp from gross overloads. Should excessive voltage be presented to the input Q1024 and Q1025, two transistors connected as diodes, conduct the excessive input current via D1010 and D1008 to the preamp supply rails and through D1013 and D1007 to ground. Excessive input voltage will cause conduction

of both of these diode paths and under certain conditions will light the protection bulbs, F1001 and F1002.

The input preamp is formed by U1028 and surrounding components. Since the input characteristics of the 5534 operational amplifier, like most operational amplifiers, includes non-linear capacitance, excessive high frequency distortion would result if the attenuator were set to any of its mid positions. This would be due to the non-linear attenuation of the HF portion of the input signal. To prevent this problem a cascode circuit is used formed by dual matched FET U1029 and surrounding components.

The output of U1028 is coupled to the post amp formed by U1030. The complementary signal is connected in a similar fashion to Pin 3 of U1030. S1001A is an eleven position rotary switch labelled on the front panel as DISTORTION. In this capacity it sets the value of gain of the post-amp U1030. In high distortion settings of -70 to 0, a 10dB loss is provided. At low distortion settings of -80, -90 and -100, gain is unity. The final output from the input preamp is available on Pin 6 of U1030. This output is also DC corrected by integrator U1031 which also drives common mode rejection trims in the feedback path.

5.3 INPUT MULTIPLEXER & SWITCHED GAIN

U1016 and U1017 are CMOS switches used as the input multiplexer to select one of six possible inputs to be measured. The first input, LEVEL, is the direct output from the preamp shown on schematic 1. This input is selected in the LEVEL mode. The second

plexers described in schematic 3 and certain other functions described later.

The gain logic shown on the right of schematic 5 sets the appropriate gain for the circuitry described in schematics 1 and 3. This is a complicated function of front panel knob setting and instrument function. For example S1001C, one section of the front panel DISTORTION control, sets the gain of the switched gain stages shown in schematic 3 only in the DISTORTION or NARROW BAND LEVEL mode. The various settings of S1002C and S1001C choose gain and attenuation combinations decoded by the various OR gates shown in the lower right hand corner of the schematic. Tables 6-1, 6-2, 6-3 and 6-4, in Section 6 and Schematic 18, describe all instrument gain conditions during various instrument functions.

5.6 DETECTORS & METER DRIVE

The signal to be measured ap pears as WEIGHTING OUT as shown on schematic 4. This signal is AC coupled to the main measurement RMS- to-DC converter, U1026. The linear output of this device is connected to a logarithmic amplifier formed by U1032A and U1032B in conjunction with U1033 to provide the logarithmic meter drive. Q1011 provides complementary temperature compensation for the logging diodes config ured from U1033, a LM394. U1035 is the meter driver amplifier, Q1010. a FET, is used as a switch to select a second averaging capacitor in parallel with C1033 to provide additional ripple suppression for low frequencies. This switch is enabled by a low frequency detect circuit shown in schematic 10.

In distortion applications, a ratiometric measurement is required: the measured value presented to U1026 must be compared against the fundamental signal which appears at PREAMP OUT. This latter signal is coupled to U1027, a second RMS-to-DC converter. The logarithmic output of this device is amplified by U1035B and coupled via R1104, CMOS switch U1034 and R1133 to the output meter drive amp. The logic shown in schematic 5 closes contacts 13 and 14 of CMOS switch U1034 only in the DISTORTION modes.

U1036 A and B are window voltage comparators which drive front panel level error indicative LEDs. The amplified DC output from U1027, representative of the PREAMP OUTPUT amplitude, is supplied as one set of inputs to these comparators. The second set of inputs is a reference voltage derived by the resistor string R1112, R1111, R1116 and R1114. Should the signal level at PREAMP OUT exceed its operating level, U1036B will change state thereby illuminating D1018 and showing a front panel overload condition. Should the signal at PREAMP OUT be too low in level, U1036A will change state and D1019 will illuminate on the front panel indicating an underload condition.

Since the distortion measurement system requires an equivalent meter gain of up to 100dB and the circuitry shown on schematic 3 only provides 80dB, the simulated meter gain is made up by DC offsets connected via the second and third sections of U1034. Tables 6-1 through 6-4, in Chapter 6, show the functions of the METER ADD and METER SUBTRACT circuits. The logic to drive these is shown in schematic 5 while

This page missing in original copy

schematic 18 shows a simplified configuration.

U1014 and U1015 are shunt regulators which generate the +7 and -7 Volt supply rails for the CMOS switches and the reference voltages used in the METER ADD and METER SUBTRACT functions.

5.7 OSCILLATOR & AGC

The oscillator is basically a state variable filter with controlled positive feedback. The three active elements are U2023, U2022 and U2020 forming the summing amp and two integrators of the conventional state variable circuit. The frequency decade range is set by selecting precision sets of capacitors via front panel FREQUENCY pushbuttons S2001, S2002 and S2003. Fine frequency control is achieved via the two section variable control V2015. V2014 and V2017 allow a small trim to the range of this frequency control.

The controlled positive feedback to sustain oscillation is via U2022 Pin 6, which is the phase two output of the state variable filter, via R2148 and the voltage controlled amplifier formed by U2024 and U2025 and also via R2049. The control inputs to this VCA are Pins 2 and 9 and 6 and 13 respectively. R2049 provides the majority of the feed back in order that the VCA need only provide a small contribution to maintain oscillation.

The control voltage input for the AGC VCA is provided by the circuitry shown in the lower portion of schematic 7. The output signal of the oscillator appears on U2020, Pin 6 and is coupled via C2067 to buffer U2019. U2021B and surrounding components generate a

sampling pulse to drive Q2010 which charges C2064 to provide a voltage on Pin 3 of U2018A representative of the peak output signal amplitude. Q2009 is a shunt regulator used to develop an accurate reference voltage which is converted to a current via R2084 and forms the second input of U2018A. The error signal developed at Pin 1 of U2018A is further integrated in the sampling circuit composed of U2021A and U2018B. The final output from U2018B is the clean control voltage used to drive the AGC VCA.

The four trim controls, V2008, V2009, V2010 and V2011, permit the injection of controlled amounts of signal into the VCA control ports to null out the second harmonic distortion appearing at the final output of the oscillator. V2009 and V2010 are frequency independent controls while the remaining two affect only the high frequency portion. As both normal and quadrature signals are derived by using phases 1 and 2, second harmonic distortion of any phase or amplitude can be completely cancelled by appropriate settings of the trim controls.

Q2011 inhibits the AGC circuit in order to shut off the oscillator when the output attenuator \$2011A is turned to the off position.

5.8 POWER AMP & OUTPUT ATTENUATOR

The final oscillator output from schematic 7 appears at one side of R2101 and via R2161 appears at U2030. The gain of this stage is set by the front panel OUTPUT LEVEL control over a range of approximately 12dB. The output of this stage is coupled via R2156 to the output power amplifier composed of U2029

and several discrete transistors as shown in the schematic.

If option 006, Intermodulation Distortion, is provided then the low frequency portion of the composite signal is injected through R2160 to form the composite signal. At the same time R2162 is grounded to attenuate the high frequency signal and provide the 4-to-1 ratio required by SMPTE specification.

The final power amp output appears at TP4 and is connected to J2004 and eventually to switches shown in schematic 15. Schematic 17 shows a simplified interconnection of the output configuration. The signal returns via Pin 1 of J2004 to appear on the output attenuator switch composed of a several-resistor ladder attenuator. S2005B is the primary output attenuator switch and if the option 005, balanced out is provided S2005C is also used. The final instrument output appears on J2003, Pins 3 and 4 which then connects via the switches on schematic 15 to the output connectors.

5.9 NOTCH FILTER

This filter is a conventional state variable filter formed by active devices U2017, U2016 and U2012. The center frequency of the filter is set in a similar matter to the filter used for the oscillator described in schematic 7. To provide the automatic tuning required, U2013 and a frequency adjust voltage controlled amplifier are injected into the path. This frequency adjust VCA is composed of U2009, U2010 and U2011. The control input to the frequency adjust VCA is via R2062 and is described in schematic 10 following. The center frequency of the filter may be varied

over a narrow range by adjusting U2013 via R2071 and R2070 the gain of which controls the amount of contribution of the frequency VCA.

The band pass output of the state variable filter, phase two, appears on Pin 6 of U2016. This signal is coupled via R2048 as one input of summing amplifier U2008. The second input of this summing amplifier is the PREAMP OUTPUT or fundamental signal and is connected via R2047. The ratio of summing of these two signals is adjusted by light dependent resistor Q2021 via R2051. Servo circuits discussed in Section 10 control the amount of current fed to the LED of Q2021 and thereby the amount of band pass signal connected to U2008. At center frequency the band pass output is exactly 180 degrees out of phase with the input signal to the filter.

Thus when the summing of the two signals is adjusted to be identical the two signals will exactly cancel at the center frequency giving a band reject or notch output. This is connected via redundant CMOS switch, U2014, to the input multiplexer described in Section 3. U2016 is a second CMOS switch used as redundant switching for the LEVEL BAND PASS and LOW PASS modes for the input multiplexer described in schematic 3. This CMOS switching is called redundant since it duplicates the function of the input multiplexer shown in schematic 3. However it is necessary in order to achieve the high levels of attenuation from unused inputs required for a distortion analyzer.

5.10 NOTCH SERVO NULL

U2003 together with U2002 form a 66dB gain amplifier to amplify the low level signal at the notch output shown in schematic 9. U2001A is an integrator used to provide DC offset correction to the 66dB gain stage. U2004A and U2004B are zero crossing detectors which produce square waves representative of the signals available at phase two and phase three respectively of the state variable filter shown in schematic 9. The output from U2004B is also sent via R2001 to the low frequency detector formed by the charge pump consisting of Q2001 and associated capacitors. The output of this frequency detect circuit is used to change the gain of integrator U2001A and the time constant of the RMS-to-DC converters described earlier in schematic 6. This frequency detect circuit is overridden when the instrument is in the DISTORTION mode.

Q2003 and Q2005 form switch-mode phase comparators used to servo tune the notch filter. U2006 and U2007 are integrators used to develop error signals from these switched comparators. The error signals are used to adjust the frequency and amplitude of the notch filter and summing circuits described in schematic 9.

U2005A and U2005B are window comparators used to drive the front panel tuning error LEDs, D2048 and D2049. A characteristic of the state variable filter is that it provides simultaneous high pass and low pass outputs (which are here called phase 1 and phase 3). When the filter is correctly tuned to the incoming frequency the signal am plitudes on phase 1 and phase 3 will be the same. When the filter is not tuned correctly

one output will be a significantly lower signal amplitude than the other one. D2017, D2018, D2016 and D2015 and associated resistors and C2018 and C2017 compare the signal amplitude at these two phases and provide input to the window comparators, U2005B and U2005A. When the filter is in tune the signal levels on phase 1 and phase 3 are the same but the phase is opposite. In this condition, neither LED will illuminate. If the filter is out of tune by more than approximately 10% the diode and resistor network will generate an error voltage which will cause the comparator to change state and the appropriate LED to illuminate. The resistor ratios are set to give the appropriate overlap by making R2033 267k and R2034 200k and a similar ratio for R2032 and R2031.

5.11 LINEAR REGULATOR & BATTERY CHARGER

5.11.1 BATTERY CHARGER

The battery charger is of the dual rate stepped charge type to allow relatively fast charging of a discharged battery, yet provide a safe float voltage on prolonged overcharge. It is temperature compensated to avoid thermal runaway charging of a hot battery and provides an indication to show when the battery is being charged at the high rate.

The power control element of the battery charger consists of a 7805 5V three terminal regulator driven by U401A. Noting that the 7805 maintains 5V between its output and reference terminals, it is possible to control the output voltage relative to circuit ground by driving the reference terminal. The error signal is derived by comparing the difference

between the 5V reference and the IR drop across the R408, R406 string. A temperature dependency matching that of the battery is introduced by including the diode located in the battery case in the reference circuit. Additionally, an integrating comparator circuit (U401B) measures the IR drop across current sensing resistor R402. At currents greater than approximately C/20 the output of U401B is at a high voltage level, reverse biasing D405 and effectively raising the reference voltage at the input of error amp U401A, producing a battery terminal voltage of 15.1V. At lower currents, U401B output goes low and robs current from the reference via D405 and R407, lowering the charge voltage to 13.9V. This imple ments the dual charge rate function. In the high charge rate mode, D406 is forward biased forcing the output of U401C high and illuminating the line present LED. This may also be effected by lowering the output of U401D which may be caused by reverse breakdown of D410 by a high enough voltage out of the rectifier filter circuit or more importantly by reverse biasing of the base emitter junction of Q405, indicating that the battery is not being used to power the instrument.

5.11.2 LINEAR REGULATOR

The linear regulator provides controlled drive to the switching converter. It provides automatic battery/line changeover determined by the magnitude of the incoming AC power. It regulates the drive to the switcher by sensing its auto transformer primary voltage. This reduces the output impedance of the switcher by including the switcher primary circuit in the feedback loop.

The main control element here is U402A which compares the attenuated output of the switcher with the precision reference voltage provided by Q402. The base drive for Q404. line sourced pass element, is supplied by R429. The output of U402A must be more negative than the base of Q404 to modulate its drive, thus reverse biasing the base emitter junction of Q405 and holding it in cutoff to avoid draining the battery. If the collectorbase junction of Q404 is not reverse biased (indicating that there is not sufficient line voltage present), the output of U401A rises to attempt to maintain regulation. This will extract instrument operating curre nt from the battery.

5.11.3 LOW BATTERY WARNING INDICATOR

A circuit is provided to indicate that an instrument that is being powered by the battery has almost exhausted its stored charge. If the battery voltage falls below a preset level, an oscillator is enabled which causes the front panel power-on LED to blink. This warns the operator that the battery is approximately 90% discharged.

The battery voltage is compared to a fraction of the stabilized output of the switching converter by U402C which is configured with a gain of 7 to effectively allow small changes in battery voltage to cause large changes in pulse width modulated oscillator U402D. With the battery voltage sufficiently high, U402C remains in positive saturation which causes the output of U402D to remain positive, holding the power-on LED full on. As the battery voltage drops, U402D is allowed to start oscillating but with a positive bias causing periodic dips in the intensity of the

LED which become progressively deeper as the battery voltage drops lower.

5.11.4 POWER SWITCH

An electronic power switch circuit permits low current ON/OFF switching as well as a feature which automatically shuts down the unit at the end of the battery discharge curve. This reduces battery drain to microamps to avoid damaging the battery. When the manual power switch is turned to the OFF position the battery drain is below its self-discharge characteristic.

The ON position of the ON/OFF switch sends diode or'd power from either the battery, battery charger circuit or the output of the switching regulator to the emitter of Q403. This waveform is coupled through C417 to the SET input of the RS latch comprised of U403A + U403B, setting the output of U403A low and turning on Q403. This applies V_{cc} to the linear regulator circuit which has a soft start feature provided by C416 across the voltage reference Q402. Comparator U402B will drive the reset input of the RS latch if the linear regulator falls out of regulation. This will shut off O403 and thus remove power from the linear regulator, removing base drive from Q405 and thus terminating battery drain. Placing the ON/OFF switch in the OFF position effectively removes all drive to and grounds out of the linear regulator V_{cc}, guaranteeing that Q405 remains in cutoff.

5.12 IMD LOW FREQUENCY OSCILLATOR

Note this function available only if option 006, IMD, is included with the instrument.

The schematic shows the low frequency oscillator used in conjunction with the existing oscillator of the 3501 to provide the composite intermodulation distortion test source. The oscillator shown in schematic 12 is a state variable filter with controlled positive feedback. The frequency of the oscillator is determined by R604, R605 and C601, C602. This is nominally set to 60Hz as shipped from the factory. By changing the value of R604 and R605 the frequency of the oscillator may be set anywhere from approximately 10Hz to over 500Hz.

Positive feedback is provided via R606 and a shunt resistor composed of R607 and the drain source resistance of Q601. When oscillating, the signal available at phase 1 (Pin 1 of U600A) and phase three (Pin 7 of U601B) is the same amplitude but of opposite phase. Thus D602 and D601 provide full wave rectification of this signal. Q608 is a shunt regulator used to derive a precision reference voltage of -6.2 volts. This voltage is converted to a current by R613 and is one input to U601A, Pin 2. The second input is the current representative of oscillator signal amplitude via R612. D603 provides temperature compensation for the inherent temperature variations in D601 and D602. U601A is a summing integrator used to compare the reference voltage to the DC representative of signal output amplitude and generate an error voltage to be fed via R609 to Q601 to control the amount of positive feedback. The circuit values are chosen so that this servo action just maintains oscillation and produces a signal amplitude of approximately 3 volts at T1, the oscillator output.

When the instrument is in the IMD mode, as determined by the functional logic described

in schematic 5, RL602 will be operated. This causes the low frequency oscillator shown in this schematic to be coupled into the power amplifier described in schematic 8. A second set of contacts in RL602 attenuates the high frequency of the oscillator by grounding R2162 of schematic 8. If the instrument is in the CCIF/IMD mode then RL601 is energized and an external signal presented to J603 via a rear panel input connector is injected into the power amplifier shown in schematic 8. At the same time the high frequency signal is reduced in amplitude approximately 6dB by the shunting effect of R650.

5.13 IMD ANALYZER

The composite input signal to be analyzed which appears at PREAMP OUT is presented to the input of the 8-pole, 2kHz high pass filter shown at the top of schematic 13. This filter removes virtually all of the low frequency component leaving only the high frequency carrier with the IMD components. In the S5PTE type of IMD signal the high frequency portion of the composite waveform is 12dB below the low frequency waveform. Therefore the signal amplitude available at the output of the 2kHz high pass filter will be substantially lower than the composite amplitude of PREAMP OUT. U605B provides approximately 14dB of gain to make up for this low level signal and provides sufficient amplitude to the succeeding circuits.

U605A and U606A is an amplitude modulation detector formed by a precision absolute value circuit. The output at T8 will be a detected version of the HF carrier signal. This signal is then low pass filtered by the 1kHz 10-pole low pass filter shown at the bottom of schematic 13. The final output

provided at J607 will thus be the AM products appearing on the HF carrier which are the intermodulation distortion products. When the instrument is switched to the CCIF IMD mode, the preamp output is connected directly to the 10-pole 1kHz low pass filter. This filter then removes the twin tone high frequency signal and leaves only the difference frequency signal for analysis at J607.

U610C is a CMOS switch used to attenuate the signal entering U605B in non-IMD modes and prevent clipping at T2. U610B is a switch to select the input to U602A which then goes to the ratiometric RMS-to-DC converter described in schematic 6. In the SMPTE IMD mode only, the input to the ratiometric RMS-to-DC converter is the amplitude of the high frequency signal. In all other modes the input to the RMS-to-DC converter is the signal at PREAMP OUT-PUT.

5.14 SWITCHING POWER SUPPLY

The switching converter subsystem is used to convert 9V regulated input power to isolated ±15V and ±22V outputs which are used to power the analyzer and generator sections of the instrument respectively. A high frequency switching technique is used to reduce the size of the transformer which provides galvanic (ground) isolation. The unit is enclosed in a metallic case and all input and output lines are filtered to suppress the transmission of spurious radiated and conducted radio frequency signals.

The switching converter may be separated into several functional blocks: an oscillator and power switching stage and three output rectifier and filter circuits. Provision is made

for including the primary circuit in a feedback loop by providing a sense output.

5.14.1 OSCILLATOR AND POWER SWITCHING CIRCUIT:

The switching converter is designed to operate at approximately 600kHz. Because it is difficult to guarantee an oscillator duty cycle of precisely 50% to avoid transformer saturation, a reference oscillator running at 1.2 MHz is divided by two to yield 600kHz at 50% duty cycle which is used to drive the power switching stage.

A classical two inverter CMOS oscillator is constructed around U502A and U502B with a design frequency of 1.2MHz and its output is divided by flip-flop U501A. The complementary outputs of the flip-flop are buffered by U502C and U502D and used to drive Q501 and Q502 out of phase. Note that the drains of Q501 and Q502 are used to short the gate-to-source junctions of Q503 and Q504 respectively and thus are only capable of turning them off. Positive gate bias is provided by R501 and R502 which are cross coupled to the drains of the complementary output devices. Thus when one of the output devices is on, its drain voltage approximates 0V and no drive is provided to its complement whose drain voltage rises to approximate twice the input voltage by virtue of auto transformer action in the primary. This provides a high gate drive voltage through the cross coupled resistor.

When the output of the flip-flop changes state the gate of the ON power device is shorted, turning it off and causing its drain voltage to rise and drive the gate of its complement whose gate has now been unclamped. Relatively large (60ma) currents flow in the cross coupled resistors for a short time (10 nsec) because the resistors must be kept low enough to quickly charge the parasitic gate capacitances. However the actual power dissipated is quite low because the voltages from which they are driven very quickly falls as the FET switches on.

5.14.2 OUTPUT RECTIFIER CIRCUIT

Full wave center tapped bridge rectifier circuits are provided for the $\pm 15V$ and $\pm 22V$ outputs. Very little energy storage is provided because of the square wave input. The rectifier matrix formed by D501 and D502 provides a reference output which includes half of the primary circuit IR losses and some of the magnetic circuit losses to permit the use of negative feedback in the drive circuit to lower output impedance and improve regulation.

5.15 FRONT SWITCH ASSEMBLY

This schematic describes the front panel switching for power on/off and monitoring and output configuration selection. It also contains the dB relative control. The functional switching of this assembly is best understood by referring to simplified schematic 17.

5.16 SYSTEM INTERCONNECT

Each subassembly interconnects with others by one of two kinds of harnesses: 16-conductor flat cable or 2-to-4 conductor, 4 pin Molex connector. Drawing number 16 gives the details of interconnection of a complete system including options.

5.17 SIGNAL PATH, OUTPUT CONFIGURATION

Drawing number 17 shows in simplified form the signal path of the output circuits. As the signal travels among several subassemblies, signal tracing can be difficult. This drawing simplifies the task.

The signal originates on schematic 8 then travels to schematic 15, optionally via the balancing module, back to schematic 8 and back to schematic 15 and the output connectors. All of the switching is identified as well as switch contact numbers and connector pin numbers on this simplified schematic.

5.18 GAIN & METER DRIVE SIGNAL PATH

Drawing 18 is a simplified func tional representation of the various gain stages and the meter drive circuits in the 3501. Reference is made to Tables 6-1 to 6-4 on pages 6-18 to 6-21 for actual gain values for every setting of front panel controls. Other schematics show the actual logic circuitry that decodes the front panel controls and drives the various

switches that establish signal routing and gain.

5.19 INSTRUMENT GROUND SYSTEM

This drawing shows in simplified form the grounding configuration of the OUTPUT and INPUT connections to the 3501. Note that the BALANCED MODE illustration presumes the instrument has option 004 and 005 installed.

5.20 POWER TRANSFORMERS

This drawing shows the internal schematic of the mains transformer. This device converts the mains voltage to the nominal 14V AC, 3A required by the 3501 power supply.

Note that the assembly has provision to accommodate several mains supply voltages. Also as shipped, a single fuse is provided but instructions are shown for wiring of a second fuse to meet particular safety standards.

5.21 The remaining drawings are reproductions of board assembly component layouts similar to information screened on to the actual boards themselves.

AMBER model 3501

DISTORTION & NOISE MEASURING SET

OWNER'S MANUAL

SECTION 6

MAINTENANCE & CALIBRATION

Issue 09 April 1988

CAUTION: This instrument contains CMOS and other types of semiconductors that are sensitive to electrostatic discharge. These parts can be permanently damaged or their reliability diminished unless proper handling procedures are followed.

Before removing the cover of this instrument, study these procedures carefully and follow them rigorously to avoid damaging your instrument.

1 - USE A STATIC FREE WORK STATION

This includes an antistatic work surface grounded via a high value resistor (330k ohm, for example) to a hard ground. Avoid all plastics, vinyl and styrofoam including styrofoam cups, plastic coffee cups, plastic coffee cup holders, cigarette packages with cellophane wrappers, plastic combs, vinyl books or folders, plastic covers on work sheets, plastic bottles, plastic bags, potato chip bags, plastic purses, plastic solder suckers and plastic ashtrays.

2 - ENSURE THAT YOUR BODY IS GROUNDED BEFORE TOUCHING ANY STATIC SENSITIVE DEVICE

Develop habits to prevent discharging your body into static sensitive devices. When approaching a test bench touch a ground first. When working on equipment wear a metallic wrist strap connected via a 330k ohm resistor to hard ground. If not wearing a grounding strap, hold on to a ground while touching any semiconductor (unpowered of course).

3 - KEEP PARTS AT GROUND POTENTIAL

Store parts in antistatic containers such as special antistatic integrated circuit storage tubes or special conductive foam. Pick up parts by the body of the item, not the leads. Do not subject semiconductors to sliding movements over any surface at any time.

4 - USE GROUNDED TEST EQUIPMENT

This includes soldering iron tips, voltmeters, oscilloscopes, etc. Never probe or test unpow-ered semiconductor circuitry with an ohm meter.

COMPONENT REMOVAL & REPLACEMENT

Components that are soldered in place must be removed with great care to avoid permanently damaging the printed circuit board. Amber circuit boards are among the highest quality available but, as with all boards with high component density, small somewhat fragile traces are used. Improper component removal could pull these traces off the board necessitating major repair.

To remove a defective or suspect component first remove solder from the mounting pad. Use a good quality vacuum solder removal tool or similar technique to remove solder from around and inside the plated through hole that mounts the component. After this is done, carefully free the leads one by one which will probably be sticking to one side of the hole. Use care to avoid damaging the pad. It is suggested that where possible, the component be crushed to allow each lead to be removed individually. If this is not pos-

sible cut each lead close to the component body, remove the body then the leads one by one. Do not use excessive force to pull the leads out of the board. They should either fall out by gravity or be able to be gently removed by applying a slight heat to the lead with a soldering iron. Avoid overheating the pad as this could destroy the adhesive holding the pad and trace to the board substrate. Examine each removed lead to see if the internal hole plating has been removed by accident. If so, this pad will have to be soldered to both sides of the board when the new component is inserted to maintain continuity.

Careful practice in component removal will prevent any board damage and leave the component mounting pads and surrounding board area in the same state it was in before component removal.

6. MAINTENANCE & CALIBRATION

6.1 CALIBRATION

The model 3501 contains a number of internal calibrations and adjustments. These fall into two categories: those requiring calibration to an external standard and those requiring adjustment for best performance. The former require the use of high precision calibration equipment not usually available in the average shop. A reasonable level of calibration, though below the 3501 specifications, can be done using a high quality AC level meter as the external reference.

All trim adjustments are located on the three (or four) circuit boards: Filter/Oscillator, Input/Meter, Power Supply and IMD. The three signal boards are horizontal while the power supply is located on the rear panel. The Filter/Oscillator board is on the top of the instrument, with adjustments accessible by removing the top cover. The Input/Meter board is located on the bottom with its adjustments accessible by removing the bottom cover. The IMD board, if provided, is also on the bottom. Note that it is only necessary to remove the top and/or bottom cover to gain access to most trim adjustments. Exceptions are the adjustments for common mode rejection on the preamp. To gain access to these trims, the bottom chassis holding the optional IMD board must be tilted back. Refer to Section 6.6.1 for instrument disassembly before removing the chassis.

6.2 INPUT/METER BOARD (3501-410-03)

This circuit board contains seven trim adjustments which calibrate the 3501 meter. There are two trim adjustments for common mode rejection and one trim capacitor for input attenuator compensation.

6.2.1 LEVEL METER CALIBRATION

Equipment required: Precision AC calibrator. Alternative equipment: If a precision AC calibrator is not available, use an accurate AC level meter and the Generator of the 3501. The accuracy of the adjustment will then be only as good as the accuracy of the meter used and may produce some anomalous results.

Note that the mechanical "zero" of the meter is set to cause the pointer to rest on the left calibration mark with no signal on the meter (3501 turned off). This is due to the fact that the meter law is logarithmic.

All seven trim adjustments which calibrate the 3501 meter are on a small circuit board located adjacent to the filter/oscillator board accessible by removing the top cover. This circuit board is interconnected to the input/meter board via a 16-conductor flat cable. The trim adjustments are numbers V1001 to V1007 inclusive in numerical order from the front of the PCB (towards meter) to the rear (towards power supply).

Connect the AC calibrator to the 3501 INPUT and select the LEVEL FUNCTION. Set the INPUT control to +10dB/3V and set the distortion control to -70/0.03%. Adjust the AC calibrator to exactly 1.000V AC at some midband frequency, 1kHz preferred. Adjust V1005 so the meter points to -10dBV or 1 on the 3FS Volts/% scale (that is at the left end of the scale).

Turn the INPUT control to 0dB/1V and adjust V1001 so the meter points to 0dBV or 1V. Check the -10dBV reading with the INPUT control at +10dB again and if necessary iterate back and forth between the 0 and +10dB positions of the INPUT control and R1128 and R1122 to achieve the correct results.

With the INPUT control to 0dB/1V and the meter indicating 0dBV/1V, turn the distortion control to -80/0.01% and adjust V1004 for the same reading (0dBV/1V).

6.2.2 RADIOMETRIC CALIBRATION

Connect the AC calibrator as above, set the distortion control to -80/0.01% and select the test mode by releasing all three FUNCTION buttons (i.e. LEVEL, THD, and IMD buttons all out).

Set INPUT control to 0dB (again using the 1.000V AC source). Adjust V1006 for a 0dBV meter indication.

Set INPUT control to +10dB and adjust V1007 for the same meter indication (0dBV).

Iterate the above steps if necessary to achieve a constant 0dBV meter reading as the INPUT control is switched between 0 and + 10 with a constant input level of 1.000 Volt.

Set distortion control to -70/0.03%, adjust V1002 for the same meter indication as the -80/0.01% position.

Select low pass mode. Set input level control to -90 (0.003%) and connect an AC source with a level of -60dBV (1mV) at 1kHz. Adjust source level so the meter indicates -10dBV (if excessive meter bounce occurs, push in both 400 HP and 30k LP filter buttons). Switch distortion control from -90dB (0.003%) to -100 dB (0.001%) and adjust V1003 for a meter reading of 0 dBV.

6.2.3 COMMON MODE REJECTION

Connect a single ended AC source of approximately 3.000V (+10dBV) and 100Hz to both balanced inputs of the 3501. To do this it will be necessary to connect to both the tip and ring of the three conductor phone jack BALANCED input. Set the INPUT control to +10dB and the DISTORTION control to -80/0.01%. Connect the INPUT MONITOR output to an oscilloscope and adjust V1008 for the most complete null. Change the source frequency to 10kHz and adjust C1090 trim-cap for the most complete null.

6.3.0 FILTER/OSCILLATOR BOARD

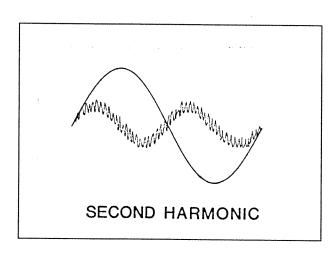
This circuit board, located at the top, contains thirteen trim adjustments. Eight are located on the right half of the board - the oscillator. The five remaining are on the left half of the board - the fundamental rejection/filter circuit. Both the oscillator and the notch filter contain frequency independent second harmonic distortion trims. Casual adjustment of these trim controls can give deceptive results fooling the user into thinking the instrument has been adjusted for minimum residual distortion. Depending on the relative phase of distortions, reinforcements or cancellations may occur causing an erroneous calibration. Therefore the calibration of the oscillator requires a "perfect" analyzer and vice versa. However an alternative technique, described in the calibration steps, overcomes the cancellation/ reinforcement effects described and makes the 3501 oscillator and analyzer distortion self-calibrating with a very high degree of accuracy.

Before beginning the calibration steps, some terminology used in the description is explained which would aid in the interpretation of results.

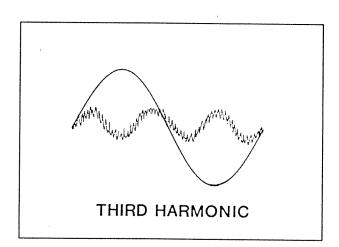
Following is a narrative on distortion residual character with illustrative waveforms. It is important to be familiar with the nature of the

residual distortion to identify the proper adjustment procedure.

Typical residual waveforms will contain noise and possibly some synchronous components. If any asynchronous components exist (example, mains hum, spurious non-related signals, etc.) they must be removed before these calibrations can proceed.


A properly adjusted and performing 3501 shows only random noise as residual distortion at mid-band frequencies. If the residual signal shows any evidence of periodicity, identify the order of the signal, that is its harmonic character, to determine the procedure for correction. Use a dual trace oscilloscope with a clean representation of the fundamental (oscillator output) on one trace and the residual on the second trace. Trigger on the fundamental.

Residual waveforms will occasionally contain several components making their identification difficult. The following descriptions presume one signal dominates (above the noise). Careful examination of a composite waveform can, with experience, determine the harmonic content. Treat the elimination of each component individually.


FUNDAMENTAL REJECTION -

The 3501 analyzer contains a very high "Q" notch filter which rejects the fundamental test frequency and leaves the remaining harmonic content intact. This notch filter has a deep notch depth of approximately 120dB, when properly adjusted.

SECOND HARMONIC DISTORTION -

Both oscillator and analyzer in the 3501 contain frequency independent second harmonic distortion trims. Second harmonic distortion may be identified by viewing the distortion products on the scope being twice (2x) the frequency of the fundamental.

THIRD HARMONIC DISTORTION -

This type of distortion is produced by various device non-linearities and can not be trimmed out in the 3501. However, third order products are typically below the residual 3501 system noise and cannot be visually identified except at the highest frequency range.

Excessive levels of third order distortion indicates a faulty component which should be identified and replaced prior to calibration.

6.3.1 FILTER CIRCUIT CALIBRATION

The five trim adjustments serve the following function and must be correctly set before the oscillator calibration is performed:

V-2001, V-2002 - fundamental rejection

V-2003, V-2004 - servo second order trim

V-2005 - filter H.F. "Q" enhancement

These adjustments are critical and will compromise system residual distortion if not correctly set. The proper adjustment requires a very high purity oscillator with known distortion characteristics below 100dB/0.001% THD at 1kHz. The 3501 oscillator may be used if it is not out of calibration; if it is, see Section 6.3.2.2.

6.3.2.1 FILTER SECOND ORDER TRIM (if 3501 oscillator is properly calibrated)

Set frequency to 1kHz (10x 100Hz) + 10dBV oscillator level and connect oscillator to analyzer by pushing PUSH FOR OSCIL-LATOR button. Connect a DC voltmeter to read DC voltage at U2006, Pin 6. Select THD mode on the front panel then adjust V2017 for a DC voltage reading of 0.000V ± 10mV. Adjust V2004 for minimum second order distortion.

Re-adjust V2017 for a DC voltage reading of -1.000V ±10mV at U2006, pin 6. Adjust V2003 for minimum second order distortion.

Leave V2017 at previous setting of -1.000V ± 10 mV at U2006, Pin 6. Then, while measuring distortion, change frequency with the

front panel frequency vernier and go through the complete range of 100Hz to 1kHz while observing front panel frequency tuning LED's. These LED's should not light as the frequeny is changed through the above range. If they do, readjust V2017 until both LED's are always extinguished.

The filter second order trims are now properly calibrated.

6.3.2.2 FILTER SECOND ORDER TRIM (if 3501 oscillator is out of calibration)

The alternate use of tip and ring input of the balance input is necessary to overcome the filter/oscillator distortion cancellation/ reinforcement. See Section 6.3.0.

The use of this alternate inversion overcomes the false second harmonic reading which would otherwise be obtained. For example, if the oscillator had second order distortion due to improper adjustment, this distortion could be incorrectly cancelled out using the analyzer adjustments. The instrument would then appear to have no second harmonic distortion but in fact, depending on the nature of the device under test, could exhibit high levels of residual distortion thereby giving erroneous readings. Because second harmonic distortion is asymmetric in nature, the problem can be avoided by adjusting while alternately inverting and not inverting the signal in the measurement path. The interacting second harmonic null adjustments in both the oscillator and the analyzer are adjusted to give the same residual distortion magnitude in the inverting and non-inverting case. As each of the controls approaches its proper setting, the residual distortion level will gradually be reduced. Iteration between all four controls (2 on the oscillator and 2 on the analyzer) while inverting and not inverting will eventually show complete absence of second order in either mode and result in the instrument achieving its specified performance.

The inversion may be achieved by using the tip or ring inputs of the BALANCED input connector alternately while grounding the unused side of either tip or ring.

Follow the calibration procedures given in Section 6.3.2.1. The proper adjustments of V2003 and V2004 will be such that no change in the residual distortion is detected with the oscillator fed via an inversion or non-inversion. Then trim out oscillator second harmonic distortion with V2009 and V2010, if it is out of calibration. Iterate above steps until minimum system residual is achieved. (Typically -103dBV, 1kHz THD + Noise, band limited with 400Hz H.P. and 30kHz L.P. filters.)

6.3.3 FUNDAMENTAL REJECTION TRIM

With the above setup, adjust V2201 and V2202 for minimum fundamental.

6.3.4 FILTER H.F. "Q" ENHANCEMENT TRIM

Connect internal oscillator directly to analyzer. Turn distortion control to 0dB/100%. Set frequency to 100kHz at +10dBV and obtain a reading in the "LEVEL" mode. Switch to band pass mode and adjust V2005 for the same meter reading as the level mode.

6.3.5 OSCILLATOR CIRCUIT CALIBRATION

The eight trim adjustments serve the following functions:

V2006 - oscillator level

V2007 - oscillator HF "Q" enhancement

V2008 and V2011 - H.F. second harmonic cancel

V2009 and V2010 - frequency independent second harmonic cancel

V2012 - transformer linearization trim

V2013 - power amplifier bias adjust

Due to the critical nature of the adjustments and oscillator distortion desired (<104dB/0.0006% typical THD + noise at 1kHz), a reference analyzer with low distortion and high notch depth (>115dB) must be used. The 3501 analyzer properly calibrated will serve this function.

Set front panel oscillator level to +10dBV and connect to calibrated 3501 analyzer or external reference analyzer and setup to read THD of the oscillator. Proceed with the following adjustments in the described order.

6.3.6 FREQUENCY INDEPENDENT SECOND HARMONIC CANCEL TRIMS

Set oscillator frequency to 1kHz (10 x 100Hz) and adjust V2009 and V2010 for minimum second harmonic distortion as viewed on an oscilloscope.

6.3.7 HIGH FREQUENCY SECOND HARMONIC CANCEL TRIMS

Set oscillator frequency to approximately 70kHz (7 x 10kHz) and adjust V2008 and V2011 for minimum second harmonic distortion as viewed on an oscilloscope.

6.3.8 POWER AMPLIFIER BIAS ADJUST

Set oscillator frequency to approximately 70kHz (7 x 10kHz) and adjust V2013 until the crossover distortion spike just disappears as viewed on an oscilloscope.

6.3.9 OSCILLATOR LEVEL ADJUST

On units with option 005, Balanced Output, set oscillator to MAX position and LEVEL control fully clockwise with FREQUENCY control at 1kHz. Select balanced output, termination switch pressed in (ON) and adjust V2006 for maximum output just before clipping occurs. On units without balanced output, adjust V2006 for +10dBV (3.16V AC) at U2020, PIN 6.

6.3.10 OSCILLATOR H.F. "Q" ENHANCEMENT ADJUST

Set oscillator to 1kHz (10 x 100Hz) and monitor DC volts at U2018, PIN 7. Note reading obtained then switch to 100kHz and adjust V2007 for the same DC voltage reading as 1kHz.

6.3.11 BALANCED OUTPUT DISTORTION NULL

Set the oscillator to 20Hz (10 x 2Hz), balanced output mode, termination on level to maximum (ATTENUATOR to MAX position and LEVEL fully clockwise). Connect the OUTPUT to the INPUT by pushing the PUSH FOR OSCILLATOR button and set up the analyzer for a THD reading. Adjust V2012 for minimum distortion while observing the distortion products on an oscilloscope. This control provides compensation for the non-linear-ities in the transformer used to achieve the balanced output. With proper adjustment, a typical reading of -94/0.002% (band limited 400Hz to 30kHz) should be obtained. The adjustment is somewhat temperature dependent and so should be made with the 3501 in a typical ambient temperature environment.

6.4 IMD BOARD (3501-460-03)

This circuit board contains only one trim. It adjusts the low frequency amplitude of the IMD composite source signal to conform to the SMPTE standard of 4:1 amplitude ratio of the low and high frequency respectively. The calibration procedure is as follows:

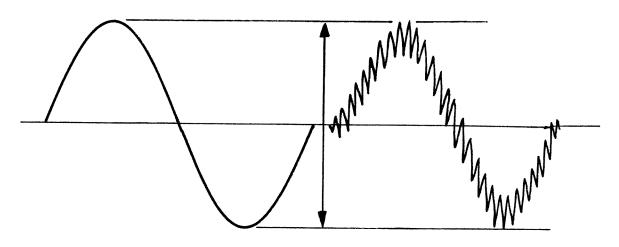
Set front panel oscillator controls to +10dBV and 10kHz and connect OUTPUT to an oscilloscope. Note the peak--to-peak sine wave amplitude displayed in the LEVEL mode. Switch function to IMD and adjust V-601 for the same peak-to-peak amplitude.

6.5 POWER SUPPLY BOARD (3501-440-03)

This circuit board contains two trim pots and serves the following functions:

V-401 - Battery charge current adjust

V-403 - Output DC rail voltage ±15Vand ±22V adjustment


6.5.1 OUTPUT RAIL VOLTAGE ADJUST

Monitor the ± 15 Volts rail voltage on the left side of the filter/oscillator board (3501-420-02) U2016, PIN 7 for + 15V and PIN 4 for -15V. Adjust V403 for ± 15 V DC on this section. The 22 Volt rails track the 15 Volt rails.

6.5.2 BATTERY CHARGE CURRENT ADJUST

(if option 001 or 002 provided)

Replace battery with 100 ohm, 5 Watt resistor and adjust V401 to obtain 14.00 Volts DC across this resistor. This sets the proper charge current for the battery.

H.F. Level Mode IMD Composite
FIGURE 6.4 IMD Signal Amplitude

6.6 MAINTENANCE SECTION

This section contains information for maintenance and repair of the 3501. The first section is detailed disassembly instructions for each sub-assembly.

6.6.1 3501 DISASSEMBLY INSTRUCTIONS

The disassembly of the 3501 requires only the use of a Phillips screwdriver, except where front panel knobs must be removed, which is described below:

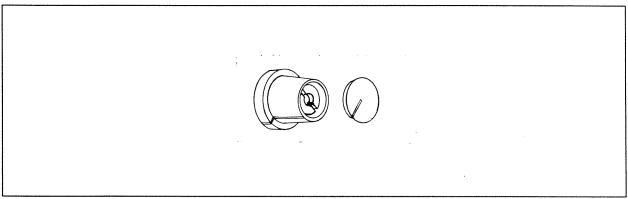


Figure 6.6.1 Knob Removal

Remove front knob caps with a to reveal a slotted nut. This must be loosened counterclockwise to decouple the knob from its shaft. This could be done by making a slotted screwdriver as shown below.

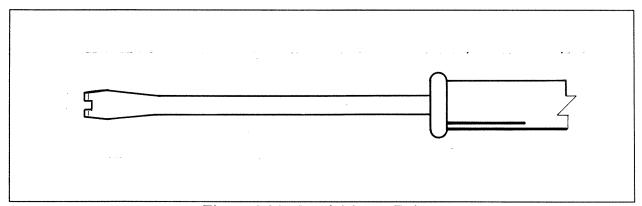


Figure 6.6.2 Special Screw Driver

CAUTION: Always unplug unit from mains supply when disassembling. Also unplug battery harness on J-404 power supply board where applicable.

6.6.2 ACCESS TO THE FRONT PANEL OUTPUT BOARD (3501-480) & IMD BOARD (3501-460)

Begin by the removal of the bottom cover which is secured by 4 black Phillips head screws; this will reveal a shield plate that contains the above boards. The right side of the IMD board contains the IMD analyzer and the left side is the low frequency oscillator. A 16 PIN flat cable loops from J-602 to the top layer board (Filter/Oscillator 3501-420). The output board (3501-480) contains switching for the oscillator output functions as well as the power functions (Power on, Battery charge, Battery test) and the dB relative control.

6.6.3 ACCESS TO THE INPUT METER BOARD (3501-410)

Follow step 1 of above then remove the dB relative knob and 2 side panel screws that secure the shield plate in place. Also remove J805 flat ribbon cable and J804, J801, J803, J812 Molex harness. By gently lifting rear of shield plate and sliding back the complete assembly it may be swung up, pivoting at the rear of the shield plate. One can then gain access to the Input/Meter board which contains the functions sketched in Figure 6.6.3.

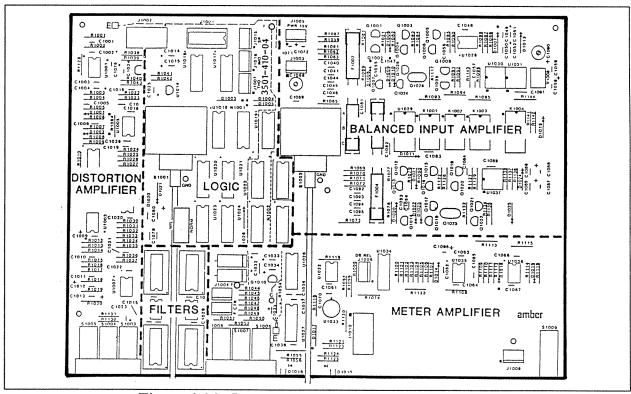


Figure 6.6.3 Input/Meter Board Functional Layout

If the removal of this board is required, the front panel is removed to allow the board to slide forward. First remove the front top and bottom dress strips and then the 4 Phillips head screws which secure the front panel to the side panels. Remove all but the FRE-QUENCY select knob which is part of the front panel assembly. Loosening two Allen head screws to the four section frequency pot, V2014 and V2015, will enable you to decouple it from its shaft. The front panel may be removed at this point and the Input/Meter board removed by unfastening the 5 screws securing the board to the 3501.

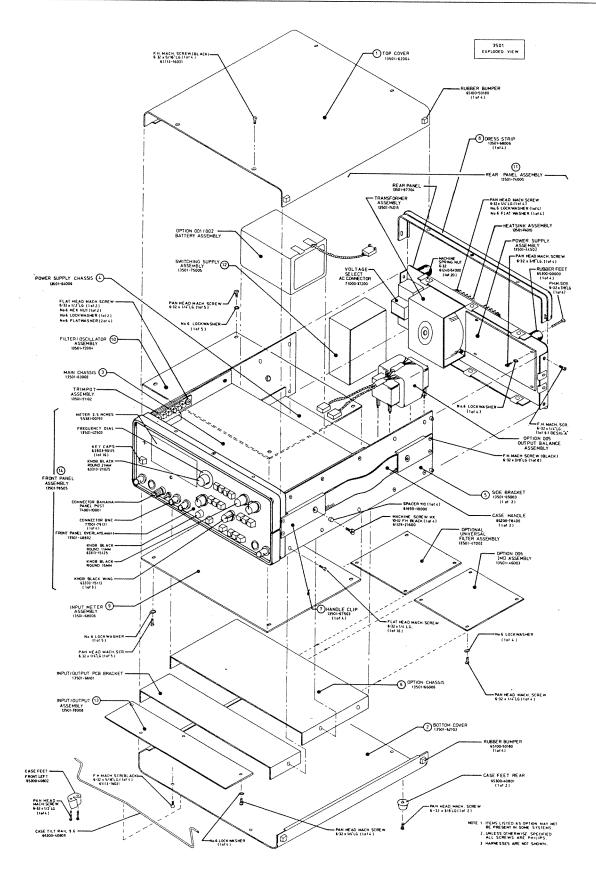
6.6.4 ACCESS TO THE FILTER/OSCILLATOR BOARD (3501-420)

Begin by the removal of the top cover which is secured by 4 Phillips head screws. This will reveal the Filter/Oscillator board (3501-420) which contains the main oscillator and power amp/attenuator on the right side and the state variable notch filter on the left side. To remove this board, first remove appropriate front panel knobs. The frequency select dial is part of the front panel assembly and may be decoupled from the 4 section frequency pot by loosening 2 Allen head screws. Then remove 5 Phillips screws securing the board and appropriate cables. The board may be slid out from the rear of the front panel.

6.6.5 ACCESS TO THE POWER SUPPLY BOARD (3501-440) & SWITCHER ASSEMBLY

The power supply is separated into two parts:

- 1) Linear section containing AC rectification, regulators and battery charge circuits
- 2) Switching supply containing the transformer, MOS-FETS and $\pm 22V$, $\pm 15V$ regulated outputs contained in a steel enclosure.


Both of these sections are located on the rear panel and bottom plate of the 3501. The rear panel must be removed so that you can remove either of these assemblies. Proceed with the following steps:

- 1) Remove both top and bottom covers (8 Phillips screws)
- 2) Remove rear top and bottom dress strips (6 screws)
- 3) Remove rear panel assembly, unplug appropriate harnesses (4 screws)

Note the flat cable J-401 orientation

4) Remove switching supply steel enclosure from bottom support plate (2 screws)

Reassemble in reverse order.

model 3501 Interior View

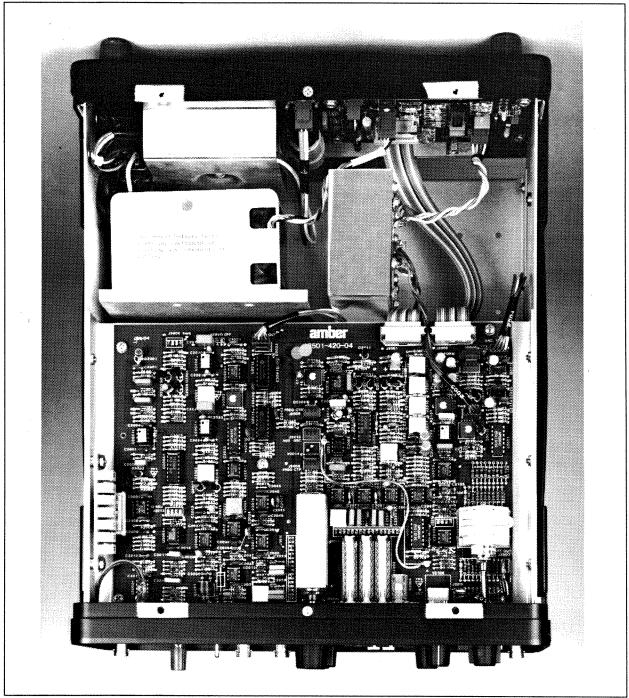


Figure 6-15 Top View

Power supply and optional battery are at the rear (top of this photo).

model 3501 Interior View

Figure 6-16 Bottom View

Large PCB is the INPUT/METER board including the Input Differential Preamp. Small board at the bottom of this photo is INPUT/OUTPUT board.

DISTORTION & NOISE MEASUREMENT SET Section 6

The following tables, 6-1 to 6-4 inclusive, show in detail the actual gains or losses in each circuit subgroup for various instrument functions and front panel settings. Reference is made to Schematic 18, in Section 8, for a simplified signal path functional diagram as well as various other schematics in Section 8 that show circuit detail.

The tables should be useful for diagnostic procedures in the event of failure modes in various LEVEL or DISTORTION meter readings. Proper use of the tables and other supporting detail schematics should permit isolation of a circuit fault to a particular device.

TABLE 1												
	3 501	SIGN L	IAL GA		NDITI	ONS						
(Dist	ortion C	Contro	l Set	: to -	80, -	90 or	-100)				
FUNCTION	UNITS				C	OND I T	ION					
Front Panel INPUT Control		+40	+30	+20	+10	0	-10	-20	-30	-40	-50	-60
Front Panel DIST Control			Set	to -8	10, -9	0 or	-100					
Input Attenuator Loss	dB	-30	-20	-10	0	0	0	0	0	0	0	0
Preamp Gain	dB	0	0	0	0	+10	+20	+30	+30	+30	+30	+30
Post Amp Gain	dB	0	0	0	0	0	0	0	0	0	0	0
Level at PREOUT	dBV	+10	+10	+10	+10	+10	+10	+10	+10	+10	+10	+10
State Variable Gain	dB	NOT USED										
Level at Notch Out	dBV	NOT USED										
Meter Amp A Gain	dB	0	0	0	0	0	0	0	0	0	+20	+20
Meter Atten A Loss	ď₿	0	0	0	0	0	0	0	-10	0	-10	0
Meter Amp B Gain	ď₿	0	0	0	0	0	0	0	+20	+20	+20	+20
Meter Atten B Loss	dB	-40	-40	-40	-40	-40	-40	-40	-40	-40	-40	-40
Meter Amp C Gain	dB	+40	+40	+40	+40	+40	+40	+40	+40	+40	+40	+40
Total Meter Gain	d₿	0	0	0	0	0	0	0	+10	+20	+30	+40
Total System Gain	d₿	-30	-20	-10	0	+10	+20	+30	+40	+50	+60	+70
Level at Filter Input	dB∨	+10	+10	+10	+10	+10	+10	+10	+10	+10	+10	+10
Level at Filter Output	dB∨	+10 +10 +10 +10 +10 +10 +10 +10 +10 +10										
Meter DC Add Gain	df8	0 0 0 0 0 0 0 0 0 0										
Meter DC Sub Gain	df8	-10 -10 -10 -10 -10 -10 -10 -10 -10 -10										
Meter Ratio Sub Gain	dB		NOT	USED		101						

			TABL	E 2								
	3501		AL GA EVEL		NDITI	ONS						
C	Distorti	on Co	ntrol	Set	to 0	to -7	0)					
FUNCTION	UNITS				C	ONDIT	1 ON					
Front Panel INPUT Control		+40	+30	+20	+10	0	-10	-20	-30	-40	-50	-60
Front Panel DIST Control			Set from 0 to -70									
Input Attenuator Loss	dB	-30	-20	-10	0	0	0	0	0	0	0	0
Preamp Gain	dB	0	0	0	0	+10	+20	+30	+30	+30	+30	+30
Post Amp Gain	dB	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10
Level at PREOUT	dBV	0	0	0	0	0	0	0	0	0	0	0
State Variable Gain	dB		NOT USED									
Level at Notch Out	dBV		NOT USED									
Meter Amp A Gain	d₿	0	0	0	0	0	0	0	0	0	+20	+20
Meter Atten A Loss	dB	0	0	0	0	0	0	0	-10	0	-10	0
Meter Amp B Gain	dB	0	0	0	0	0	0	0	+20	+20	+20	+20
Meter Atten B Loss	dB	-40	-40	-40	-40	-40	-40	-40	-40	-40	-40	-40
Meter Amp C Gain	dB	+40	+40	+40	+40	+40	+40	+40	+40	+40	+40	+40
Total Meter Gain	dB	0	0	0	0	0	0	0	+10	+20	+30	+40
Total System Gain	df8	-30	-20	-10	0	+10	+20	+30	+40	+50	+60	+70
Level at Filter Input	d≅V	0	0	0	0	0	0	0	0	0	0	0
Level at Filter Output	dB∨	0	0	0	0	0	0	0	0	0	0	0
Meter DC Add Gain	dß	0	0	0	0	0	0	0	0	0	0	0
Meter DC Sub Gain	dB	0	0	0	0	0	0	0	0	0	0	0
Meter Ratio Sub Gain	dB		NO.	r USEI	D			•	•	***************************************		•

TABLE 3												
	3501	SIGN	IAL GA	IN CC	NDITI	ONS						
	DISTO	RTION	MODE	(THD	or I	MD)						
FUNCTION	UNITS				C	ONDIT	ION					
Front Panel INPUT Control			-40 t	:0 -20	to e	exting	uish	LEDs				
Front Panel DIST Control		0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100
Input Attenuator Loss	dB		-30 t	:o (depe	nding	on i	nput	level			
Preamp Gain	d₿		0 t	o +30	depe	ending	on i	nput	level			
Post Amp Gain	dB	-10	-10	-10	-10	-10	-10	-10	-10	0	0	0
Level at PREOUT	d₿V											
State Variable Gain	dB	0 0 0 0 0 0 0 0 0 0										
Level at Notch Out	ď₿V	0 -10 -20 -30 -40 -50 -60 -70 -70 -80 -90										
Meter Amp A Gain	dB	0	0	0	+20	+20	0	0	+20	+20	+20	+20
Meter Atten A Loss	ď₿	0	-10	0	-10	0	-10	0	-10	-10	0	0
Meter Amp B Gain	dB	0	+20	+20	+20	+20	+20	+20	+20	+20	+20	+20
Meter Atten B Loss	ď₿	-40	-40	-40	-40	-40	0	0	0	0	0	0
Meter Amp C Gain	d₿	+40	+40	+40	+40	+40	+40	+40	+40	+40	+40	+40
Total Meter Gain	dB	0	+10	+20	+30	+40	+50	+60	+70	+70	+80	+80
Total System Gain	ď₿		NOT	APPL	ICABL	.E						
Level at Filter Input	dB∨	0	0	0	0	0	0	0	0	0	0	-10
Level at Filter Output	dB∨	0	0	0	0	0	0	0	0	0	0	-10
Meter DC Add Gain	ď₿	0 0 0 0 0 0 0 0 0 +10										
Meter DC Sub Gain	dВ	0	0	0	0	0	0	0	0	0	0	0
Meter Ratio Sub Gain	dB	-10	-10	-10	-10	-10	-10	-10	-10	0	0	0

TABLE 4												
	3501	SIGN	IAL G/	IN CC	MDITI	ONS						
	LOW	PASS	or BA	ND PA	SS MC	DE						
FUNCTION	UNITS					OND I I	TON					
Front Panel INPUT Control	UNITS	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20	-20
Front Panel DIST Control		0	-10	-20	-30	-40	-50	-60	-70	-80		-100
Input Attenuator Loss	dB	0	0	0	0	0	0	0	0	0	0	0
Preamp Gain	dB	+30	+30	+30	+30	+30	+30	+30	+30	+30	+30	+30
Post Amp Gain	dB	-10	-10	-10	-10	-10	-10	-10	-10	0	0	0
Level at PREOUT	dB∨	30dB more than input signal										
State Variable Gain	ď₿	0 0 0 0 0 0 0 0 0 0										
Level at Notch Out	dB∨	NOT USED										
Meter Amp A Gain	dB	0	0	0	+20	+20	0	0	+20	+20	+20	+20
Meter Atten A Loss	ď₿	0	-10	0	-10	0	-10	0	-10	-10	0	0
Meter Amp B Gain	dB	0	+20	+20	+20	+20	+20	+20	+20	+20	+20	+20
Meter Atten B Loss	ď₿	-40	-40	-40	-40	-40	0	0	0	0	0	0
Meter Amp C Gain	88	+40	+40	+40	+40	+40	+40	+40	+40	+40	+40	+40
Total Meter Gain	d8	0	+10	+20	+30	+40	+50	+60	+70	+70	+80	+80
Total System Gain	ď₿	+20	+30	+40	+50	+60	+70	+80	+90	+100	+110	+110
Level at Filter Input	dBV	0	0	0	0	0	0	0	0	0	0	-10
Level at Filter Output	d₿V	0	0	0	0	0	0	0	0	0	0	-10
Meter DC Add Gain	dß	0	0	0	0	0	0	0	0	0	0	+10
Meter DC Sub Gain	dB	0	0	0	0	0	0	0	0	0	0	0
Meter Ratio Sub Gain	dß.		NOT	USE)							

AMBER model 3501

DISTORTION & NOISE MEASURING SET

OWNER'S MANUAL

SECTION 7

PARTS LISTS

Issue 09 April 1988

3501 PARTS LISTS

TABLE OF CONTENTS

BOARD	PAGE
Federal Supply Code Summary	7-2
Total Assembly	7-3
Input Meter Assembly	7-5
Filter Oscillator Assembly	7-13
Linear Regulator Battery Charger Board	7-23
Switching Power Supply Assembly	7-25
Switching Power Supply Box Assembly	7-27
Switcher Heatsink Assembly	7-27
Trimpot PCB Assembly	7-28
Heatsink Assembly	7-28
Transformer Assembly	7-28
Input/Output Assembly	7-29
Front Panel Assembly	7-31
Rear Panel Assembly	7-32
Intermodulation Distortion Option	7-33

				STATE				
FSC	Company	Address	CITY	PROV	Postal Code	COUNTRY	Ph	ione
00501	7M CANADA 1	19/0 00/2-4 04						
	3M CANADA Inc. Allen Bradley Co.	1840 Oxford Street East 1201 South 2nd Street	London Milwaukee	Ont	N6A 4T1	Canada		451-2 500
	Alpha Wire Corporation	711 Lidgerwood Avenue	Elizabeth	WI LM	53204 07207	USA USA		671-2000
	Amber Electro Design Inc.	·-	St Laurent	PQ	H4T 1W5	Canada		735 -4105
	AMP Incorporated	2800 Fulling Mill	Harrisburg	PA	17105	USA		564-0100
	Analog Devices	Two Technology Way	Norwood	MA	02062-9106	USA		329 -4700
26394	Ansley Electronics	4371 Vly Blvd	Los Angeles	CA	90032-3632	USA	(0)	327 4700
91506	Augat Inc.	33 Perry Avenue	Attleboro	MA	02703-2417	USA	(617)	222-2202
04222	AVX Corporation	19th Avenue South	Myrtle Beach	SC	29577	USA		448-9411
32997	Bourns Inc.	1200 Columbia Avenue	Riverside	CA	92507-2114	USA	•	
21604	Buckeye Stamping Co.	555 Marion Road	Columbus	OH	43207-2550	USA	(614)	445-8433
09353	C & K Components Inc.	15 Riverdale Avenue	Newton	MA	02158-1057	USA	(617)	964- 6400
	Clairex Electronics	560 South Third Avenue	Mount Vernon	NY	10550	USA	(914)	664-6602
	Clarostat Mfg Co. Inc.	Lower Washington Street	Dover	NH	03820	USA	(603)	742-1120
	Concord Electronics Corp.		New York	NY	10012-1115	USA	(212)	777-6571
	Corning Glass Works	550 High Street	Bradford	PA	16701-3737	USA	(814)	362-5700
	COTO Corporation	65 Pavilion Avenue	Providence	RI	02905-1523	USA	(401)	467-4777
	Dale Electronics Inc.	2064 12th Avenue	Columbus	NE	68601-3632	USA	(402)	564-3131
	Eaton Corporation	8700 Brookpark Drive	Cleveland	OH	44101	USA		221-2304
	EDAC Inc.	20 Railside Road	Don Mills	Ont	M3A 1A4	Canada		445-2292
	Fredericks Company, The General Instrument	Pillmont Avenue & Anne St.			19006	USA		947-2500
	General Instrument	4433 N. Ravenswood Ave.	Chicago	IL	60640-5802	USA		784-1020
	Hammond Manufacturing	3400 Hillview Avenue	Palo Alto	CA	94303-1319	USA		493-0400
	Hitachi America Ltd.	394 Edinburgh Road 950 Benicia Avenue	Guelph	Ont	N1H 1ES	Canada		822-2960
	Hitachi America Ltd.	1810 Bering Drive	Sunnyvale San Jose	CA CA	94086-2804 95122	USA		773-8833
	International Rectifier	233 Kansas Street	El Segundo	CA	90245-4316	USA	(408)	292- 6404
	Intersil Inc.	10600 Ridgeview Court	Cupertino	CA	95014-0704	USA		
	Intertechnical Group	1 Bridge Street	Irvington	NY	10533	USA	(01/.)	591-8822
	ITT Schadow Inc.	8081 Wallace Road	Eden Prairie	MN	55344-2224	USA	-	934-4400
04426	ITW Switches	6615 West Irving Park Rd	Chicago	IL	60634-2410	USA	-	282-4040
99813	Jan Hardware	47 - 27 36th Street	Long Island City	NY	11101-1823	USA		361-0800
91833	Keystone Electronics Co.	49 Bleecker Street	New York	NY	10012-2408	USA		475-4600
91836	Kings Electronics Co.	40 Marbledale Road	Tuckahoe	NY	10707-3420	USA		793-5000
83330	Kulka Smith	1913 Atlantic Avenue	Manasquan	NJ	08736-1005	USA	(201)	223-9400
75915	Littlefuse/Tracor	800 E. Northwest Highway	Des Plaines	1L	60016-3049	USA	(312)	824-1188
90599	Mallory Distributor Prod	PO Box 1558	Indianapolis	IN	46206	USA		
52942	Minnesota Mining & Mfg/3M	2111 West Braker Lane	Austin	TX	78769-2963	USA		
27264		2222 Wellington Court	Lisle	IL	60532-1613	USA	(312)	969-4550
	Motorola Inc.	5005 E McDowell Road	Phoenix	AZ	85008-4229	USA		
	Murata Erie North America		Smyrna	GA	30080	USA	(404)	436-1 300
	National Semiconductor	2900 Semiconductor Drive	Santa Clara	CA	95051-0606	USA	(408)	721-5000
	PHC Industries Inc.	1643 Haddon Avenue	Camden 3	NJ	08103-3109	USA		
	RCA Corporation	Route 202	Somerville	NJ	08876	USA		
	Richco	5825 N. Tripp Avenue Box 700	Chicago	IL	60646-6013	USA		539-4060
	Rogers Corporation Schaffner Inc.	220 Little Falls Road	Chandler	AZ	85224	USA		963-4584
	Seastrom Mfg Co.	701 Sonora Avenue	Cedar Grove Glendale	NJ CA	07009-1231	USA		239-4321
	Selco Products Co.	7580 State Road	Buena Park	CA	91201-2431 90621-1224	USA		245-9121
	Siemens Company	186 Wood Avenue South	Iselin	NJ		USA		521-8673
	Signetics Corporation	811 E. Arques Avenue	Sunnyvale	CA	08830-2704 94088-3409	USA USA	(201)	
	Siliconix Incorp.	2201 Laurelwood Road	Santa Clara	CA	95054-1516	USA		991-2000 988-8000
	Spae Naur Inc.	815 Victoria Street N.	Kitchener	Ont	N2G 4B1	Canada		744-3521
	Standard Microsystems Co	35 Marcus Boulevard	Hauppauge	NY	11788	USA	~ 1//	177 4/61
	Tel Labs Inc.	154 Harvey Road	Londonderry	NH	03053	USA	(603)	625-8994
01295	Texas Instruments	PO Box 225012	Dallas	TX	75265	USA		
13103	Thermalloy Inc.	2021 West Valley View Lane	Dallas	TX	75381-0839	USA	(214)	243-4321
7M235	Toshiba America Inc.	2692 Dow Avenue	Tustin	CA	92680	USA		832-6300
	Unitrode Corporation	5 Forbes Road	Lexington	MA	02173-7305	USA		861-6540
95275	Vitramon North America	Box 544	Bridgeport	CT	06601-0544	USA	(203)	268 -6261

		A 1	1BER	FLECT			MANIE	FACTURER	OTV
DESIG	DESCRIPTION					MANUFACTURER			
	SERIAL NO. PLATE	11000	0-40011		38047	AMBER	1100	0-40011	1
	CALIBRATION STICKER		0-40021		38047	AMBER		0-40021	
	HARNESS 805-401	13501	-30805	14"	38047	AMBER		1-30805	
	HARNESS 1006-802		1-31006		38047	AMBER		1-31006	•
	HARNESS 1007-2007	13501	1-31007	6"		AMBER		1-31007	
	HARNESS 1009-808	1350	1-31009	10"		AMBER		1-31009	-
	HARNESS 2001-1001		-32001			AMBER		1-32001	
	HARNESS 2003-803		-32003			AMBER		1-32003	_
	HARNESS 2004-804	13501	1-32004	12"		AMBER		1-32006	1
1	TOP COVER	1350	1-62004		38047	AMBER		1-62004	
2	BOTTOM COVER	13501	1-62103			AMBER		1-62103	
3	MAIN CHASSIS	13501	-63002		38047	AMBER		1-63002	
4	POWER SUPPLY CHASSIS	13501	1-64006		38047	AMBER	1350	1-64006	1
5	SIDE BRACKET	13501	1-65003		38047	AMBER	1350	1-65003	2
6	OPTION CHASSIS	13501	-66006			AMBER	1350	1-66006	1
7	HANDLE CLIPS	13501	1-67503			AMBER	1350	1-67503	4
8	DRESS STRIPS	13501	-68006		38047	AMBER	1350	1-68006	4
9	INPUT METER ASSEMBLY	13501	1-71006		38047	AMBER	1350	1-71006	1
10	FILTER/OSC ASSEMBLY	13501	1-72004		38047	AMBER	1350	1-72004	1
11	REAR PANEL ASSEMBLY	13501	1-74000		38047	AMBER	1350	1-74000	1
12	SWITCHING SUPPLY ASSEMBLY	13501	-75005		38047	AMBER	1350	1-75005	1
13	INPUT/OUTPUT PCB ASSEMBLY	13501	-78 008		38047	AMBER	1350	1-78008	1
14	FRONT PANEL ASSEMBLY		-79 000		38047	AMBER	1350	1-79000	1
	MACHINE SCREW PHIL 6-32 FH	61113	3-16025	1/4		VARIOUS	AN50	7-632-R4	27
	MACHINE SCREW PHIL 6-32 FH BLK	61113	3-16031	5/16		VARIOUS	AN50	7-632-R5	16
	MACHINE SCREW PHIL FH 6-32	61113	3-160 50	1/2		VARIOUS	AN50	7-632-R8	3 2
	MACHINE HEX SCREW 10-32 FH BLK	61129	7-21600	1/2	94223	SPAE NAUR	HX-2	16	4
	MACHINE HEX NUT	61220	-63200	#6		VARIOUS	MS35	649-262	2
	MACHINE SPRING NUTS	61240	-54000	6-32	78553	EATON	TN-2	26	20
	WASHER FLAT	61510	-16400	#6		VARIOUS SPAE NAUR	AN-9	60-6	4
	SPACER #10	61699	7-10000		94223	SPAE NAUR	SPA-	22	4
	KNOB BLACK ROUND	63312	2-11103	11M	59270	SIFAM	S111	003	1
	KNOB BLACK ROUND	63313	3-15125	15MM	59270	SIFAM	S151	-125	1
	KNOB BLACK WING	63333	3-15113	15MM	59270	SIFAM	SB15	1 125	3
	KNOB CAP BLACK	63803	5-11100	11MM	59270	SIFAM	C111		1
	NUT COVER BLACK	63803	3-11101	11MM	59270	SIFAM	N111		1
	KNOB CAP BLACK	63803	3-15100	15MM	59270	SIFAM	C151		4
	NUT COVER BLACK	63803	3-15101	15MM	59270	SIFAM	N151		4
	RUBBER BUMPER BUTTON	65100	7-50180		09581	3M	SJ50	18/6227	4
	CASE HANDLE	65200	78400 - 7 8400	10"	12136	PHC	7840		2
	CASE FEET REAR	65300	-40801			BUCKEYE	MP40	008-01B	2
	CASE FEET LEFT FRONT	65300	-40802		21604	BUCKEYE	MP40	008-01B	1
	CASE FEET RIGHT FRONT	65300	-40803		21604	BUCKEYE	MP40	008-01B	1
	CASE TILT BAIL 9.6	65300	-40809		21604	BUCKEYE	MP40	008-9.6	1
	POWER CORD		0-00000			ALPHA		A 533	1

This page missing in original

DESIG	DESCRIPTION	AMBER ELE		FSC	MANUFACTURER	MANUFACTURER PART NUMBER	QTY USED
		47504 /4007		780/7	AMBER	13501-41007	1
	PRINTED CIRCUIT BOARD	13501-41007			AMBER	13501-61201	1
	PCB SHIELD	13501-61201 13501-71102			AMBER	13501-71102	1
	TRIMPOT PCB ASSEMBLY	58350-02381 21		30041	MOGAMI	2381	1
	WIRE COAXIAL CABLE		•	04426	ITW/LICON	80-3901150000	7
	KEY CAPS BEIGE	63803-90115 67100-27000			SPAE NAUR	WT-27	2
	SCREW LUG #10	71008-20839 8	DIN		AUGAT	208-AG39D	13
	CONNECTOR SOCKET PCB DIL	71006-20639 6 1			AUGAT	214-AG39D	9
	CONNECTOR SOCKET PCB DIL				AUGAT	216-AG390	6
	CONNECTOR SOCKET PCB DIL	71016-21639 16 71615-51610 16			AUGAT	516-AG10D	5
	CONNECTOR MACHINE SOCKET		PIN		LITTLE FUSE	102068	4
	FUSE CLIPS	85314-10206	- EV	-		DD06B10N750470J500V	1
	CAPACITOR CERAMIC DISC	41033-04700 47	P 5%	31400	MURATA/ERIE	V00CE 1047 J047 03 J00V	•
	NOT USED						
	NOT USED		20*	25,000	CIEMENC	85200/10/40V	
	CAPACITOR ELECT 10/40	48050-01000 10			SIEMENS SIEMENS	85200/10/40V	
	CAPACITOR ELECT 10/40	48050-01000 10				DD05B10N750150J500V	1
	CAPACITOR CERAMIC DISC	41033-01500 15			MURATA/ERIE	MKS3 0.47/63/20W	1
	CAPACITOR FILM	45042-44701 0.		68919			•
	CAPACITOR ELECT 10/40	48050-01000 10			SIEMENS	85200/10/40V	
C1009	CAPACITOR ELECT 10/40	48050-01000 10	20%	25088	SIEMENS	85200/10/40V	
C1010				E4101		NN0ER4047E0400 (E00)/	9
	CAPACITOR CERAMIC DISC	41033-01000 10			MURATA/ERIE	DD05B10N750100J500V	7
	CAPACITOR ELECT 10/40	48050-01000 10	-		SIEMENS	85200/10/40V	
	CAPACITOR ELECT 10/40	48050-01000 10			SIEMENS	85200/10/40V	
	CAPACITOR ELECT 10/40	48050-01000 10	-		SIEMENS	85200/10/40V	
	CAPACITOR ELECT 10/40	48050-01000 10			SIEMENS	85200/10/40V	
	CAPACITOR ELECT 10/40	48050-01000 10			SIEMENS	85200/10/40V	
C1017	CAPACITOR ELECT 10/40	48050-01000 10	0 20%	25088	B SIEMENS	85200/10/40V	
C1018	NOT USED		_			** 05 nu 75 07 n 7 n 5 00 v	
C1019		41033-00330 3			6 MURATA/ERIE	DD05BN7503R3D500V	1
C1020	CAPACITOR CERAMIC DISC	41033-11500 1	50P 20%	5140	6 MURATA/ERIE	DD09B10N750151J500V	1
C1021	NOT USED						
	NOT USED					05000 (40 (/0))	
C1023	CAPACITOR ELECT 10/40	48050-01000 1	-		8 SIEMENS	85200/10/40V	
C1024		48050-01000 1			8 SIEMENS	85200/10/40V	
C1025	CAPACITOR ELECT 10/40	48050-01000 1			8 SIEMENS	85200/10/40V	
C1026	CAPACITOR CERAMIC DISC	41033-01000 1			6 MURATA/ERIE	DD05B10N750100J500V	
C1027	CAPACITOR CERAMIC DISC	41033-01000 1			6 MURATA/ERIE	DD05B10N750100J500V	
C1028	CAPACITOR CERAMIC DISC	41033-01000 1			6 MURATA/ERIE	DD05B10N750100J500V	
C1029	CAPACITOR CERAMIC DISC	41033-01000 1			6 MURATA/ERIE	DD05B10N750100J500V	
C1030	CAPACITOR ELECT 22/40	48050-02200 2			8 SIEMENS	85200/22/40	_
C1031	CAPACITOR ELECT 22/40	48050-02200 2	2 209	2508	8 SIEMENS	85200/22/40	2
C1032	CAPACITOR FILM	45042-31002 0	.01 207	6891	9 WIMA	MKS3 0.01/100/20W	1
C1033	CAPACITOR TANTALUM 1/25	47031-01090 1	207	3191	8 ITT	TAG 1.5M25	
C1034	CAPACITOR TANTALUM 10/25V	47031-10000 1	0 207	3191	8 ITT	TAG 10M25	
C1035		47031-01090 1	203	3191	8 ITT	TAG 1.5M25	2
C1036		41033-31000 0	.01 20	5140	6 MURATA/ERIE	DD16F10Y5P103K1KV	
	CAPACITOR CERAMIC DISC	41033-31000 0	.01 20	5140	6 MURATA/ERIE	DD16F10Y5P103K1KV	
C1038		41033-31000 0	0.01 20	5140	6 MURATA/ERIE	DD16F10Y5P103K1KV	
C1039							
C1040		41033-03300 3	53P 5%	5140	6 MURATA/ERIE	DD05B10N750330J500V	1
C1041		45042-11500 1	150P 5%	6891	9 WIMA	FKC3 150/160/5W	
2,47,							

DECLO	DECEDITION	AMBER	ELECT				MANUFACTURER	QTY
DESIG		PART NUMBER	VALUE	TOL	FSC	MANUFACTURER		USED
C1044	NOT USED					**********		
	CAPACITOR FILM	45042-11000	100p	5%	68010	WIMA	FV67 400 /4/0 /F::	
C1046		45042 11000	1001	2%	00717	MILLY	FKC3 100/160/5W	
C1047	CAPACITOR FILM	45042-13300	330P	5%	68919	LIMA	FKC3 330/160/5	
C1048	CAPACITOR CERAMIC DISC	41033-01000				MURATA/ERIE	DD05B10N750100J500V	
C1049	CAPACITOR CERAMIC DISC	41033-31000				MURATA/ERIE	DD16F10Y5P103K1KV	
C1050	CAPACITOR CERAMIC	41033-31000				MURATA/ERIE	DD16F10Y5P103K1KV	
	CAPACITOR ELECT 10/40	48050-01000	10			SIEMENS	85200/10/40V	21
	CAPACITOR ELECT 10/40	48050-01000	10	20%		SIEMENS	85200/10/40V	£ 1
	NOT USED						35200, 10, 101	
C1054		45042-13300	330P	5%	68919	WIMA	FKC3 330/160/5	2
C1055							•	_
	CAPACITOR CERAMIC DISC	41033-01000	10P			MURATA/ERIE	DD05B10N750100J500V	
	CAPACITOR CERAMIC DISC	41033-02200		20%	51406	MURATA/ERIE	DD05B10N750220J500V	1
C1058	10,25	47031-10000			31918		TAG 10M25	3
C1059		47031-10000			31918		TAG 10M25	
	CAPACITOR CERAMIC DISC	41033-31000				MURATA/ERIE	DD16F10Y5P103K1KV	
C1061		41033-31000				MURATA/ERIE	DD16F10Y5P103K1KV	
C1063	CAPACITOR CERAMIC DISC	41033-31000				MURATA/ERIE	DD16F10Y5P103K1KV	
		41033-31000				MURATA/ERIE	DD16F10Y5P103K1KV	
C1064 C1065		41033-31000				MURATA/ERIE	DD16F10Y5P103K1KV	
C1065						MURATA/ERIE	DD16F10Y5P103K1KV	21
C1067						MURATA/ERIE	DD16F10Y5P103K1KV	
C1067				20%		MURATA/ERIE	DD16F10Y5P103K1KV	
C1069		49000-53801	7-25P		51406	MURATA/ERIE	DV11PS25B	2
C1070	· · · · · · · · · · · · · · · · · · ·	/50/3 34000	40000					
C1071		45042-21000 48050-01000		5%		WIMA	FKC3 1000/160/5W	1
	CAPACITOR ELECT 10/40	48050-01000				SIEMENS	85200/10/40V	
C1073	CAPACITOR CERAMIC DISC	41033-05600				SIEMENS	85200/10/40V	
C1076		48020-04790				MURATA/ERIE SIEMENS	DD06B10N750560J500V	1
	CAPACITOR CERAMIC DISC	41033-31000				MURATA/ERIE	85200/4.7/16	1
	CAPACITOR CERAMIC DISC	41033-31000				MURATA/ERIE	DD16F10Y5P103K1KV	
C1079		41033-31000				MURATA/ERIE	DD16F10Y5P103K1KV	
C1080	CAPACITOR ELECT 10/40	48050-01000				SIEMENS	DD16F10Y5P103K1KV	
C1081	CAPACITOR CERAMIC DISC	41033-31000				MURATA/ERIE	85200/10/40V DD16F10Y5P103K1KV	
C1082	CAPACITOR CERAMIC DISC	41033-31000				MURATA/ERIE	DD16F10Y5P103K1KV	
C1083	CAPACITOR CERAMIC DISC	41033-31000				MURATA/ERIE	DD16F10Y5P103K1KV	
C1084	CAPACITOR CERAMIC DISC	41033-01000				MURATA/ERIE	DD05B10N750100J500V	
C1085	CAPACITOR CERAMIC	41033-31000				MURATA/ERIE	DD16F10Y5P103K1KV	
C1086	CAPACITOR CERAMIC	41033-31000	0.01			MURATA/ERIE	DD16F10Y5P103K1KV	
C1087	CAPACITOR ELECT 10/40	48050-01000	10			SIEMENS	85200/10/40V	
C1088	CAPACITOR ELECT 10/40	48050-01000	10			SIEMENS	85200/10/40V	
C1089	CAPACITOR CERAMIC DISC	41033-01000	10P			MURATA/ERIE	DD05B10N750100J500V	
C1090	CAPACITOR TRIM CONTROL TA	49000-53800	7-25P			MURATA/ERIE	DV11PR25A	
C1091	CAPACITOR FILM	45042-42000		20%	68919	WIMA	MKS3 0.22/63/20W	1
C1092	CAPACITOR FILM	45042-11500	150P	5%	68919	WIMA	FKC3 150/160/5W	2
C1093	NOT USED							0
C1094	NOT USED							
	CAPACITOR FILM	45042-11000			68919		FKC3 100/160/5W	2
		48020-04700 4					85200/47/16	1
C1097	CAPACITOR CERAMIC DISC	41033-68000 6	580P	5%	51406	MURATA/ERIE	DD06B10Y5P681K1KV	1

DESIG	DESCRIPTION	AMBER PART NUMBER	ELECT VALUE	TOL	FSC	MANUFACTURER	MANUFACTURER PART NUMBER	QTY USED
CD	CAPACITOR MONOLYTHIC	43031-41000	0.1	20%	04222	AVX	SR205C104MAA	19
D1001	SEMICON DIODE GEN PURPOSE	21136-41500				MOTOROLA	1N4150	20
D1002	SEMICON DIODE GEN PURPOSE	21136-41500				MOTOROLA	1N4150	
D1003	SEMICON DIODE GEN PURPOSE	21136-41500				MOTOROLA	1N4150	
D1004	SEMICON DIODE GEN PURPOSE	21136-41500			1A223	MOTOROLA	1N4150	
D1005	SEMICON DIODE GEN PURPOSE	21136-41500				MOTOROLA	1N4150	
D1006	SEMICON DIODE GEN PURPOSE	21136-41500				MOTOROLA	1N4150	
D1007	SEMICON DIODE ZENER 22V	21207-47480	22V			MOTOROLA	1N4748A	
D1008	SEMICON DIODE GEN PURPOSE	21136-41500				MOTOROLA	1N4150	
D1009	SEMICON DIODE GEN PURPOSE	21136-41500			1A223	MOTOROLA	1N4150	
D1010	SEMICON DIODE GEN PURPOSE	21136-41500				MOTOROLA	1N4150	
D1011	SEMICON DIODE ZENER 22V	21207-47480	22V		1A223	MOTOROLA	1N4748A	5
D1012	SEMICON DIODE ZENER 3.3V	21207-07461	3.30		1A223	MOTOROLA	1N746A	1
D1013	SEMICON DIODE ZENER 22V	21207-47480	22V		1A223	MOTOROLA	1N4748A	
D1014	SEMICON DIODE GEN PURPOSE	21136-41500			1A223	MOTOROLA	1N4150	
D1015	SEMICON DIODE GEN PURPOSE	21136-41500			1A223	MOTOROLA	1N4150	
D1016	SEMICON DIODE GEN PURPOSE	21136-41500			1A223	MOTOROLA	1N4150	
D1017	SEMICON DIODE GEN PURPOSE	21136-41500			1A223	MOTOROLA	1N4150	
D1018	SEMICON LED RECT RED	21531-57124			58361	GI	MV57124	
D1019	SEMICON LED RECT RED	21531-57124			58361	GI	MV57124	2
D1020	SEMICON DIODE GEN PURPOSE	21136-41500			1A223	MOTOROLA	1N4150	
D1021	SEMICON DIODE GEN PURPOSE	21136-41500			1A223	MOTOROLA	1N4150	
D1022	SEMICON DIODE GEN PURPOSE	21136-41500			1A223	MOTOROLA	1N4150	
D1023	SEMICON DIODE GEN PURPOSE	21136-41500			1A223	MOTOROLA	1N4150	
D1024	SEMICON DIODE ZENER 22V	21207-47480	22V		1A223	MOTOROLA	1N4748A	
D1025	SEMICON DIODE ZENER 22V	21207-47480	22V		1A223	MOTOROLA	1N4748A	
D1026	SEMICON DIODE GEN PURPOSE	21136-41500			1A223	MOTOROLA	1N4150	
D1027	SEMICON DIODE GEN PURPOSE	21136-41500			1A223	MOTOROLA	1N4150	
D1028	SEMICON DIODE GEN PURPOSE	21136-41500			1A223	MOTOROLA	1N4150	
D1029	NOT USED				1A223			
F1001	LAMP MINIATURE SLIDE BASE	91000-12000	120		71744	GI/CHICAGO	120PSB	4
	LAMP MINIATURE SLIDE BASE	91000-12000	120		71744	GI/CHICAGO	120PSB	
F1003	LAMP MINIATURE SLIDE BASE	91000-12000	120		71744	GI/CHICAGO	120PSB	
F1004	LAMP MINIATURE SLIDE BASE	91000-12000			71744	GI/CHICAGO	120PSB	
J1001	CONNECTOR FLAT CABLE BLUE	72016-16780	16 PIN		26394	ANSLEY	609-1678	4
J1002	CONNECTOR FLAT CABLE BLUE	72016-16780	16 PIN		26394	ANSLEY	609-1678	
J1003	CONNECTOR HEADER LATCH	78007-20410	4 PIN		27264	MOLEX	22-29-2041	
J1004	CONNECTOR HEADER LATCH	78007-20410	4 PIN		27264	MOLEX	22-29-2041	
	CONNECTOR HEADER LATCH	78007-20410	4 PIN			MOLEX	22-29-2041	
	CONNECTOR HEADER LATCH	78007-20410	4 PIN		27264	MOLEX	22-29-2041	
	CONNECTOR HEADER LATCH	78007-20410	4 PIN		27264	MOLEX	22-29-2041	7
J1008	NOT USED							
J1009	CONNECTOR HEADER LATCH	78007-20410			27264	MOLEX	22-29-2041	
J1010	CONNECTOR FLAT CABLE BLUE	72016-16780	16 PIN		26394	ANSLEY	609-1678	
J1011	NOT USED							
J1012	NOT USED							
	NOT USED							
	CONNECTOR HEADER LATCH	78007-20410				MOLEX	22-29-2041	
	RELAY REED 1 FORM A	84801-26041				СОТО	2604-12-300	3
	RELAY REED 1 FORM A	84801-26041				СОТО	2604-12-300	
K1003	RELAY REED 1 FORM A	84801-26041				СОТО	2604-12-300	
K1004	RELAY 2 FORM C	84801-18000	18V		31918	ITT	RY-18WK	1

DESIG	DESCRIPTION	AMBER PART NUMBER	ELECT VALUE	TOL	FSC	MANUFACTURER	MANUFACTURER PART NUMBER	QTY USED
N1001	RESISTOR NET 16PIN 15 RES	38167-10030	1006	 5%	27007	POUDLIC	/4440_000_40/	
	RESISTOR NET 16PIN 8 RES	38165-22020		5%		BOURNS BOURNS	4116R-002-104	1
	SEMICON TRANSISTOR PNP	22622-44030		34		MOTOROLA	4116R-001-223	
	SEMICON TRANSISTOR PNP	22622-44030				MOTOROLA	2N4403 2N4403	10
Q1003		22522-44010				MOTOROLA	2N4401	12
Q1004		22622-44030				MOTOROLA	2N4403	12
Q1005		22522-44010				MOTOROLA	2N4401	
	SEMICON TRANSISTOR PNP	22622-44030				MOTOROLA	2N4403	
	SEMICON TRANSISTOR PNP	22622-44030				MOTOROLA	2N4403	
	SEMICON TRANSISTOR NPN	22522-44010			1A223	MOTOROLA	2N4401	
Q1009		22522-44010				MOTOROLA	2N4401	
	SEMICON FET N CHANNEL	22392-09200			17856	SILICONIX	J-111	2
Q1011		22392-09200			17856	SILICONIX	J-111	-
Q1012	SEMICON TRANSISTOR PNP	22622-44030				MOTOROLA	2N4403	
	SEMICON TRANSISTOR PNP	22622-44030				MOTOROLA	2N4403	
	SEMICON TRANSISTOR PNP	22622-44030				MOTOROLA	2N4403	
	SEMICON TRANSISTOR NPN	22522-44010				MOTOROLA	2N4401	
	SEMICON TRANSISTOR PNP	22622-44030				MOTOROLA	2N4403	
	SEMICON TRANSISTOR NPN	22522-44010				MOTOROLA	2N4401	
	SEMICON TRANSISTOR NPN	22522-44010				MOTOROLA	2N4401	
Q1019	SEMICON TRANSISTOR NPN	22522-44010			1A223	MOTOROLA	2N4401	
Q1020	SEMICON TRANSISTOR PNP	22622-44030				MOTOROLA	2N4403	
Q1021	SEMICON TRANSISTOR NPN	22522-44010				MOTOROLA	2N4401	
Q1022	SEMICON TRANSISTOR NPN	22522-44010			1A223	MOTOROLA	2N4401	
Q1023	SEMICON DUAL N CH FET	22318-25146				TOSHIBA	2SK146GR	2
Q1024	SEMICON TRANSISTOR NPN	22522-44010			1A223	MOTOROLA	2N4401	
Q1025	SEMICON TRANSISTOR NPN	22522-44010			1A223	MOTOROLA	2N4401	
Q1026	SEMICON DUAL N CH FET	22318-25146			7M235	TOSHIBA	2SK146GR	
R1001	RESISTOR CF 1/4W	32033-10000	100	5%	01121	ALLEN BRADLEY	CB1015	11
R1002	RESISTOR CF 1/4W	32033-10030	100K	5%	01121	ALLEN BRADLEY	CB1045	
R1003	RESISTOR CF 1/4W	32033-10000	100	5%	01121	ALLEN BRADLEY	CB1015	
R1004	RESISTOR CF 1/4W	32033-10000	100	5%	01121	ALLEN BRADLEY	CB1015	
R1005	RESISTOR CF 1/4W	32033-22000	220	5%	01121	ALLEN BRADLEY	CB2215	2
R1006	RESISTOR CF 1/4W	32033-33000	330	5%	01121	ALLEN BRADLEY	CB3315	
R1007	RESISTOR CF 1/4W	32033-10010		5%		ALLEN BRADLEY		6
R1008	RESISTOR MF 1/4W	32040-10020	10K00	0.1%	91637	DALE	CMF55-T2-10.00K1	
R1009	RESISTOR MF 1/4W					DALE	CMF55-T2-3.162K1	1
	RESISTOR MF 1/4W	32040-14610					CMF55-T2-1.463K1	1
R1011		32033-10000		5%		ALLEN BRADLEY		
		32033-10000		5%		ALLEN BRADLEY		
R1013	RESISTOR MF 1/4W	32040-20010					CMF55-T2-2.000K1	1
R1014	RESISTOR MF 1/4W	32040-43300			91637	DALE	CMF55-T2-432.6R1	1
R1015	RESISTOR CF 1/4W	32033-10020		5%		ALLEN BRADLEY		
R1016	RESISTOR MF 1/4W	32040-56200			91637		CMF55-T2-562.3R1	1
R1017	RESISTOR CF 1/4W	32033-10050		5%		ALLEN BRADLEY		1
R1018	RESISTOR CF 1/4W	32033-10010		5%		ALLEN BRADLEY		
R1019	RESISTOR CF 1/4W	32033-10000		5%		ALLEN BRADLEY		
R1020	RESISTOR CF 1/4W	32033-10000		5%		ALLEN BRADLEY		
R1021	RESISTOR CF 1/4W	32033-47000		5%		ALLEN BRADLEY		
R1022	RESISTOR CF 1/4W	32033-10000		5%		ALLEN BRADLEY		
R1023	RESISTOR CF 1/4W	32033-10000		5%		ALLEN BRADLEY		
R1024	RESISTOR CF 1/4W	32033-22000	220	5%	U1121	ALLEN BRADLEY	CB2215	

		AMBER	FLECT				MANUFACTURER	QTY
DESIG	DESCRIPTION		VALUE	TOL	FSC	MANUFACTURER	PART NUMBER	USED
R1025	RESISTOR CF 1/4W	32033-10020	10K	5%	01121	ALLEN BRADLEY	CB1035	
R1026	RESISTOR CF 1/4W	32033-10020	10K	5%	01121	ALLEN BRADLEY	CB1035	
R1027	RESISTOR CF 1/4W	32033-10020	10K	5%	01121	ALLEN BRADLEY	CB1035	13
R1028	RESISTOR CF 1/4W	32033-10020	10K	5%	01121	ALLEN BRADLEY	CB1035	
R1029	RESISTOR MF 1/4W	32040-11110	1K111	0.1%	91637	DALF	CMF55-T2-1.111K1	1
R1030	RESISTOR MF 1/4W						CMF55-T2-10.00K1	3
R1031	RESISTOR CF 1/4W	32033-10010	1K	5%	01121	ALLEN BRADLEY	CB1025	
R1032	RESISTOR CF 1/4W	32033-20010	2K	5%	01121	ALLEN BRADLEY	CB2025	1
	RESISTOR MF 1/4W	32040-99010	9K900	0.1%	91637	DALE	CMF55-T2-9.900K1	1
R1034							CMF55-T2-100.OR1	
R1035	RESISTOR CF 1/4W	32033-22020	22K	5%	01121	ALLEN BRADLEY	CB2235	2
R1036	RESISTOR MF 1/4W	32040-10020	10K00	0.1%	91637	DALE	CMF55-T2-10.00K1	
	NOT USED							0
R1038	RESISTOR CF 1/4W	32033-20020				ALLEN BRADLEY		
R1039	RESISTOR CF 1/4W	32033-12020				ALLEN BRADLEY		
	RESISTOR CF 1/4W	32033-68000				ALLEN BRADLEY		1
	RESISTOR CF 1/4W					ALLEN BRADLEY		2
	RESISTOR CF 1/4W					ALLEN BRADLEY		2
R1043	RESISTOR CF 1/4W	32033-33000	330	5%		ALLEN BRADLEY		_
R1044	RESISTOR MF 1/4W	32035-60410	6K04	1%	24546	CORNING	SMA4-6.04K-1	2
R1045	RESISTOR MF 1/4W	32035-66500	665	1%	24546	CORNING	SMA4-665R-1	2
R1046	RESISTOR MF 1/4W					CORNING		
R1047	RESISTOR MF 1/4W	32035-60410	6K04	1%	24546	CORNING	SMA4-6.U4K-1	•
	NOT USED		4				004005	0
	RESISTOR CF 1/4W					ALLEN BRADLEY		
	RESISTOR CF 1/4W					ALLEN BRADLEY		
R1051	RESISTOR CF 1/4W	32033-10020	10K			ALLEN BRADLEY		
	N20101011 01 17 11	32033-10020				ALLEN BRADLEY		
R1054	RESISTOR CF 1/4W	32033-22020	22K	5%	01121	ALLEN BRADLEY	0.01.150	4
	THERMISTER 3500 PPM/DEG. C	34066-10010	1K0	1%	94522	LET TARS	Q-01-1KU	1
R1056	RESISTOR MF 1/4W	32035-24920	2489	1%	24040	COKNING	SMA4-24.9K-1	1
	RESISTOR MF 1/4W							
R1061	RESISTOR MF 1/4W	32040-68410	0K838	0.1%	91037	DALE	CMF33*12*0.030K*.!	
R1062	RESISTOR 1/2W	32050-21620	21K02	0.1%	01121	DALE DOADLEY	CMF33-12-21.02K1	1
	RESISTOR CF 1/4W	32033-18030	IOUK	2%	01121	ALLEN BRADLET	CBIOID	0
	NOT USED	7/0/7 /9/3/	10270	0.19	01477	7 DALE	CMF55-T2-68.38K1	•
		32040-10010					CMF55-T2-1.000K1	
	RESISTOR MF 1/4W						CMF55-T2-1.000K1	2
R1069		32040-10010 32040-21610					CMF55-T2-2.162K1	2
R1070						7 DALE	CMF55-T2-6.838K1	-
R1071	RESISTOR MF 1/4W	32040-68410 32050-21620				7 DALE	CMF55-T2-21.62K	2
R1072		34063-68420				7 DALE	CMF55-T2-68.38K1	2
R1073		32035-14000		1%		5 CORNING	SMA4-140R-1	1
R1074		32035-14000		1%		5 CORNING	SMA4-499R-1	3
R1075				1%		5 CORNING	SMA4-499R-1	
R1076		32035-49900		5%		1 ALLEN BRADLEY		. 2
R1077		32033-36000 32033-04700		5%		1 ALLEN BRADLEY		-
	RESISTOR CF 1/4W	32033-04700		5%		1 ALLEN BRADLEY		
R1079		32033-4700		5%		1 ALLEN BRADLEY		7
R1080		32033-3300		5%		1 ALLEN BRADLEY		•
R1081		32033-3800		5%		1 ALLEN BRADLEY		
R1082	RESISTOR CF 1/4W	JEUJJ-JJUU		20	5112	. DESCRIPTION		

		AMBER	FLECT				MANUFACTURER	QTY
DESIG	DESCRIPTION	PART NUMBER		TOL	FSC	MANUFACTURER	PART NUMBER	
	***************************************						***********	
	RESISTOR CF 1/4W	32033-06200	62	5%	01121	ALLEN BRADLEY	CB6205	
R1084	RESISTOR CF 1/4W	32033-06200	62	5%	01121	ALLEN BRADLEY	CB6205	4
R1085	RESISTOR CF 1/4W	32033-33000	330	5%	01121	ALLEN BRADLEY	CB3315	
R1086	RESISTOR CF 1/4W	32033-47010	4K7	5%	01121	ALLEN BRADLEY	CB4725	6
R1087	RESISTOR CF 1/4W	32033-47010	4K7	5%	01121	ALLEN BRADLEY	CB4725	
R1088	RESISTOR CF 1/4W	32033-47010	4K7	5%	01121	ALLEN BRADLEY	CB4725	
R1089	RESISTOR CF 1/4W	32033-04700	47	5%	01121	ALLEN BRADLEY	CB4705	2
R1090	RESISTOR MF 1/4W	32040-24910	2K490	0.1%	91637	DALE	CMF55-T2-2.490K1	
R1091	RESISTOR CF 1/4W	32033-82010	8K2	5%	01121	ALLEN BRADLEY	CB8225	2
R1092	RESISTOR CF 1/4W	32033-13000	130	5%	01121	ALLEN BRADLEY	CB1315	2
R1093	RESISTOR MF 1/4W	32040-23010	2K303	0.1%	91637	DALE	CMF55-T2-2.303K1	1
R1094	RESISTOR MF 1/4W	32040-55300	553R3				CMF55-T2-553.3R1	
R1095		32040-16300					CMF55-T2-162.6R1	
		32040-24910	2K490	0.1%	91637	DALE	CMF55-T2-2.490K1	
R1097	RESISTOR CF 1/4W	32033-33000	330	5%	01121	ALLEN BRADLEY	CB3315	
R1098	-	32035-20020	20K0			CORNING		1
R1099	· ·	32035-10020	10K0	1%	24546	CORNING	SMA4-10K-1	
R1100	RESISTOR CF 1/4W	32033-10020		5%	01121	ALLEN BRADLEY	CB1035	
	•	32033-10020	10K			ALLEN BRADLEY		
	RESISTOR CF 1/4W	32033-10020		5%	01121	ALLEN BRADLEY	CB1035	
	RESISTOR MF 1/4W	32035-12130		1%	24546		SMA4-121K-1	2
	RESISTOR MF 1/4W	32035-10020		1%	24546	CORNING	SMA4-10K-1	
	RESISTOR MF 1/4W	32035-12130	121K				SMA4-121K-1	
	RESISTOR MF 1/4W	32035-24910				CORNING	SMA4-2.49K-1	1
	RESISTOR MF 1/4W	32035-88710		1%		CORNING		1
	RESISTOR MF 1/4W	32035-49900		1%	24546	CORNING	SMA4-499R-1	
R1109		32033-10030		5%	01121	ALLEN BRADLEY	CB1045	
		32035-39220		1%		CORNING		1
		32035-33200					SMA4-332R-1	1
		32035-10020				CORNING	SMA4-10K-1	
	RESISTOR CF 1/4W	32033-10020		5%		ALLEN BRADLEY		
		32035-10020		1%		CORNING		
		32033-10020				ALLEN BRADLEY		
		32035-06650				CORNING		1
	<u>-</u>	32033-47000				ALLEN BRADLEY		4
	RESISTOR MF 1/4W		475	1%	24546	CORNING	SMA4-475R-1	1
	RESISTOR SELECTED MATCH Q1011							1
	RESISTOR CF 1/4W	32035-33230		1%		CORNING	SMA4-332K-1	1
R1121	RESISTOR MF 1/4W	32033-49920		1%		CORNING	SMA4-49.9K-1	1
R1122	RESISTOR CF 1/4W	32033-06200		5%		ALLEN BRADLEY		
R1123	RESISTOR MF 1/4W	32035-41210		1%		CORNING	SMA4-4.12K-1	
R1124	RESISTOR CF 1/4W	32033-10010		5%		ALLEN BRADLEY		
R1125	RESISTOR CF 1/4W	32033-10010		5%		ALLEN BRADLEY		
R1126	RESISTOR CF 1/4W	32033-06200		5%		ALLEN BRADLEY		
R1127	RESISTOR CF 1/4W	32033-33000		5% 5~		ALLEN BRADLEY		_
R1128	RESISTOR CF 1/4W	32033-10030		5%		ALLEN BRADLEY		3
R1129	RESISTOR MF 1/4W	32040-24910			91637		CMF55-T2-2.490K1	
R1130	RESISTOR CF 1/4W	32033-10000		5% E=		ALLEN BRADLEY		
R1131	RESISTOR CF 1/4W	32033-10000		5% E×		ALLEN BRADLEY		
R1132	RESISTOR CF 1/4W	32033-47000		5%		ALLEN BRADLEY		-
R1133	RESISTOR MF 1/4W	32035-10020		1%		CORNING	SMA4-10K-1	5
R1134	RESISTOR CF 1/4W	32033-13000	130	5%	01727	ALLEN BRADLEY	CB1315	

		AMBER EL	ECT			MANUFACTURER	QTY
25010	DESCRIPTION	PART NUMBER VA		FSC	MANUFACTURER		USED
DESIG	DESCRIPTION						
	RESISTOR CF 1/4W	32033-82010 8K	2 5%	01121	ALLEN BRADLEY	CB8225	
	RESISTOR CF 1/4W	32033-47010 4K	7 5%		ALLEN BRADLEY		
	RESISTOR CF 1/4W	32033-47010 4K	7 5%		ALLEN BRADLEY		
R1138	RESISTOR CF 1/4W	32033-47010 4K	7 5%	01121	ALLEN BRADLEY		
R1139		32040-78710 7K	874 0.17	91637	DALE	CMF55-T2-7.874K1	
R1140		32040-24910 2K				CMF55-T2-2.490K1	5
R1141	RESISTOR MF 1/4W	32040-24910 2K		91637		CMF55-T2-2.490K1	
R1142	RESISTOR MF 1/4W	32040-78710 7K	874 0.1	91637		CMF55-T2-7.874K1	2
	RESISTOR CF 1/4W	32033-10040 1M	5%	01121	ALLEN BRADLEY		1
	RESISTOR MF 1/4W	32035-24310 2K	43 1%	24546	CORNING	SMA4-2.43K-1	1
	SWITCH ROTARY 3 POLE 11 POS	81113-31311			ITW/RCL	0301XC30B11UPF-ARZZ0	
	SWITCH ROTARY 3 POLE 12 POS	81113-31312		04426	ITW/RCL	0301XC30B12UPF-ARZZ0	
S1003	SWITCH PUSHBUTTON 2U	83116-20000		31918	ITT/SCHADOW	F2UEE	4
S1004	SWITCH PUSHBUTTON 2U	83116-20000		31918	ITT/SCHADOW	F2UEE	
S1005	SWITCH PUSHBUTTON 2U	83116-20000		31918	ITT/SCHADOW	F2UEE	_
S1006	SWITCH PUSHBUTTON ASSEMBLY	83116-10320		31918	ITT/SCHADOW	F103X2UGR	1
s1007	SWITCH PUSHBUTTON	83116-10320		31918	ITT/SCHADOW	PART/S1006	
S1008	SWITCH PUSHBUTTON	83116-10320		31918	ITT/SCHADOW	PART/S1006	
S1009	SWITCH PUSHBUTTON 2U	83116-20000		31918	ITT/SCHADOW	F2UEE	
U1001	SEMICON OP AMP LO NOISE	25311-55340		01295	SIGNETICS	NE5534AN	5
U1002	SEMICON CMOS SWITCH	24021-40530		3L585	RCA	CD4053BPC	
U1003	SEMICON OP AMP J FET	25311-35700		27014	NATIONAL	LF357N	1
U1005	SEMICON OP AMP PRECISION	25311-31800		27014	NATIONAL	LM318N	1
U1006	SEMICON CMOS SWITCH	24021-40530		3L585	RCA	CD4053BPC	
U1007	SEMICON OP AMP LO NOISE	25311-55340		I CH66	SIGNETICS	NE5534AN	
U1008	NOT USED						
U1009	SEMICON OP AMP BI-FET DUAL	25111-07200		01295	5 TI	TL072CP	_
U1010	FILTER NETWORK	13501-01228 8	OkHz	38047	AMBER	1228	1
U1011	FILTER NETWORK	13501-01223 3	OkHz	38047	7 AMBER	1223	1
U1012	SEMICON OP AMP BI-FET DUAL	25111-07200		01295	5 TI	TL072CP	
U1013	FILTER NETWORK	13501-01214 4	00Hz		7 AMBER	1214	1
U1014	SEMICON SHUNT REGULATOR	25992-43100		0129		TL431CLP	
U1015	SEMICON REGULATOR	25992-43100		0129		TL431CLP	2
U1016	SEMICON CMOS SWITCH	24021-40530			5 RCA	CD4053BPC	_
U1017	SEMICON CMOS SWITCH	24021-40530			5 RCA	CD4053BPC	5
บ1018	SEMICON CMOS OR GATE	24021-40720			5 RCA	CD4072BPC	
U1019	SEMICON CMOS OR GATE	24021-40720			5 RCA	CD4072BPC	
U1020					5 RCA	CD4071BPC	1
U1021		24021-40750			5 RCA	CD4075BPC	1
U1022		24021-40720			5 RCA	CD4072BPC	
U1023	SEMICON CMOS OR GATE	24021-40720			5 RCA	CD4072BPC	5
U1024		24021-40280			5 RCA	CD4028BPC	1
U1025		24021-40720			5 RCA	CD4072BPC	-
U1026		25000-53600			5 ANALOG DEVICE		2
U1027		25000-53600			5 ANALOG DEVICE		
U1028		25311-55340			6 SIGNETICS	NE5534AN	
U1029		23316-20030			3 MOTOROLA	ULN2003N	1
U1030	SEMICON OP AMP LO NOISE	25311-55340			6 SIGNETICS	NE5534AN	_
U1031		25111-07100			5 TI	TL071CP	2
U1032					4 NATIONAL	LF412CN	1
บ1033		22622-39400			4 NATIONAL	LM394CH	1
U1034	SEMICON CMOS SWITCH	24021-40530		3L58	5 RCA	CD4053BPC	

DESIG	DESCRIPTION	AMBER PART NUMBER	ELECT VALUE	TOL	FSC	MANUFACTURER	MANUFACTURER PART NUMBER	QTY USED
U1035 U1036	SEMICON OP AMP BI-FET DUAL SEMICON OP AMP BI-FET DUAL	25111-07200 25111-07200			01295		TL072CP	
U1037	SEMICON OF AMP LO NOISE	25311-55340			01295 ICH66	SIGNETICS	TL072CP NE5534AN	4

		AMBER	ELECT		500	MANUEACTURED	MANUFACTURER PART NUMBER	QTY USED
DESIG	DESCRIPTION	PART NUMBER	VALUE	IOL		MANUFACTURER	PART NORDER	
	PRINTED CIRCUIT BOARD FIL/OSC	13501-42004			38047	AMBER	13501-42004	1
	RCL SWITCH SECTION SHIELD	13501-69402			38047	AMBER	13501-69402	1
	WIRE COAXIAL CABLE	58350-02381	6#			MOGAMI	2381	1
	KEY CAPS DARK BROWN	63803-90114			04426	ITW/LICON	80-3901140000	4
	SCREW LUG #10	67100-27000			94223	SPAE NAUR	WT-27	1
	CONNECTOR SOCKET PCB DIL	71008-20839			91506	AUGAT	208-AG39D	22
	CONNECTOR SOCKET PCB DIL	71014-21439	14PIN		91506	AUGAT	214-AG39D	2
	CONNECTOR SOCKET PCB DIL	71016-21639	16PIN			AUGAT	216-AG39D	4
C2001	CAPACITOR CERAMIC DISC					MURATA/ERIE	DD12B10Z5U103M1KV	35
	CAPACITOR FILM	45042-31002					MKS3 0.1/100/20W	1
C2003	CAPACITOR FILM	45042-41002	0.1	20%	68919	WIMA	MKS3 0.1/100/20W	2
C2004	CAPACITOR CERAMIC DISC	41033-31000				MURATA/ERIE	DD12B10Z5U103M1KV	
C2005	CAPACITOR CERAMIC DISC	41033-31000	0.01			MURATA/ERIE	DD12B10Z5U103M1KV	-
C2006	CAPACITOR FILM	45042-42202			68919		MKS3 0.22/63/20W	3
C2007	CAPACITOR CERAMIC DISC	41033-31000				MURATA/ERIE	DD12B10Z5U103M1KV	
C2008	CAPACITOR CERAMIC DISC	41033-31000				MURATA/ERIE	DD12B10Z5U103M1KV	4
C2009	CAPACITOR CERAMIC DISC	41033-00330				MURATA/ERIE	DD05B10N7503R3D1KV	
C2010	CAPACITOR CERAMIC DISC	41033-0033				MURATA/ERIE	DD05B10N7503R3D1KV	
C2011	CAPACITOR CERAMIC DISC	41033-3100				MURATA/ERIE	DD12B10Z5U103M1KV	
C2012	CAPACITOR CERAMIC DISC	41033-3100	0.01	20%	5140	6 MURATA/ERIE	DD12B10Z5U103M1KV	
C2013	NOT USED							
C2014	NOT USED							
	NOT USED				F4/0	/ MIDATA /FD1E	DD12B10Z5U103M1KV	
	CAPACITOR CERAMIC DISC					6 MURATA/ERIE	MKS3 0.22/63/20W	
C2017	CAPACITOR FILM	45042-4220				9 WIMA	MKS2 0.22/63/20W	
C2018		45042-2203				9 WIMA	MKS3 1.0/63/20W	2
C2019		45042-5100				9 WIMA 8 ITT	TAP 1.5M25	7
C2020		47031-0159				8 ITT	TAP 1.5M25	
C2021		47031-0159 45042-5100		20%		9 WIMA	MKS3 1.0/63/20W	
C2022				20%		8 ITT	TAP 1.5M25	
C2023		47031-0159 47031-0159		_	3191		TAP 1.5M25	
C2024		41033-3100				6 MURATA/ERIE		
C2025		47031-1000			3191		TAP 10M25	
	CAPACITOR TANTALUM 10/25V	41033-0100				6 MURATA/ERIE	DD05B10N750100J500	8 VC
	CAPACITOR CERAMIC DISC	47031-1000			ر 3191		TAP 10M25	
	CAPACITOR TANTALUM 10/25V	41033-3100				06 MURATA/ERIE	DD12B10Z5U103M1KV	
	CAPACITOR CERAMIC DISC CAPACITOR CERAMIC DISC	41033-010		20		6 MURATA/ERIE	DD05B10N750100J50	0V
		41033-133				06 MURATA/ERIE	DD12F10N750331J50	0v 3
C2031		41033-022				06 MURATA/ERIE	DD05B10NP0220J500	v 5
C203		41033-310				06 MURATA/ERIE	DD12B10Z5U103M1KV	
C2033		41033-100			% 514	06 MURATA/ERIE	DD08B10N750101J50	0V 4
C203		41033-310			% 514	06 MURATA/ERIE	DD12B10Z5U103M1KV	'
C203		41033-120			952	75 VITRAMON	VP12BA221F	4
	7 CAPACITOR CERAMIC DISC	41033-010	00 10P	20	% 514	06 MURATA/ERIE	DD05B10N750100J50	10V
C203		41033-310	00 0.0	1 20	% 514	06 MURATA/ERIE	DD12B10Z5U103M1KV	•
C203		41033-310	00 0.0	1 20	% 514	06 MURATA/ERIE		
C203		41033-010	00 10P	20	% 514	06 MURATA/ERIE		
C204		41033-310			% 514	06 MURATA/ERIE	DD12B10Z5U103M1KV	1
C204		41033-310	00 0.0	1 20		06 MURATA/ERIE		
C204		41033-310	00 0.0			06 MURATA/ERIE		
C204		41033-310	00 0.0	1 20	% 514	06 MURATA/ERIE	DD12B10Z5U103M1K\	<i>!</i>
UZ.04								

DESIG	!	DESCRIPTION	AMBER PART NUMBER	ELECT VALUE	TOL	FSC	MANUFACTURER	MANUFACTURER PART NUMBER	QTY USED

		CERAMIC NPO	41033-12200		1%		VITRAMON	VP12BA221F	
C2046		CERAMIC DISC	41033-31000	-01	20%		MURATA/ERIE	DD12B10Z5U103M1KV	
C2047		CERAMIC DISC	41033-10000		20%		MURATA/ERIE	DD08B10N750101J500V	
C2048		CERAMIC DISC	41033-31000		20%		MURATA/ERIE	DD12B10Z5U103M1KV	
C2049		CERAMIC DISC	41033-31000		20%		MURATA/ERIE	DD12B10Z5U103M1KV	
C2050		CERAMIC DISC	41033-31000		20%		MURATA/ERIE	DD12B10Z5U103M1KV	
C2051		CERAMIC DISC	41033-01000		20%		MURATA/ERIE	DD05B10N750100J500V	
C2052 C2053		CERAMIC DISC	41033-02200		20%		MURATA/ERIE	DD05B10NP0220J500V	
C2054		CERAMIC NPO FILM SELECTED	41033-20010 45042-32203				VITRAMON	VP12BA202F	4
C2055		FILM SELECTED	45042-32203		SEL	68919 68919		MKS2 0.022/63/5W	4
C2056		FILM SELECTED	45042-42203		SEL			MKS2 0.22/63/5W	4
C2057		FILM SELECTED	45042-32203			68919 68919		MKS2 0.22/63/5W	
C2058		CERAMIC NPO	41033-20010				VITRAMON	MKS2 0.022/63/5W	
C2059		ELECT 4.7/25V	48050-04790		20%		SIEMENS	VP12BA202F 85200/4.7/25	4
C2060		CERAMIC DISC	41033-13300		20%		MURATA/ERIE		1
C2061		CERAMIC DISC	41033-13300		20%		MURATA/ERIE	DD12F10N750331J500V	
C2062	CAPACITOR		45042-41002		20%	68919	•	DD12B10Z5U103M1KV	
C2063		CERAMIC DISC	41033-31000		20%		MURATA/ERIE	MKS3 0.1/100/20W	
C2064	CAPACITOR		45042-24700			68919		DD12B10Z5U103M1KV FKC3 4700/160/5W	1
C2065		CERAMIC DISC	41033-31000		20%		MURATA/ERIE	DD12B10Z5U103M1KV	1
C2066		CERAMIC DISC	41033-31000		20%		MURATA/ERIE	DD12B10Z5U103M1KV	
C2067	CAPACITOR		45042-44701		20%	68919	-	MKS3 0.47/63/20W	1
C2068		CERAMIC NPO	41033-12200		1%		VITRAMON	VP12BA221F	,
C2069		CERAMIC DISC	41033-31000		20%		MURATA/ERIE	DD12B10Z5U103M1KV	
C2070		CERAMIC DISC	41033-31000		20%		MURATA/ERIE	DD12B10Z5U103M1KV	
C2071		CERAMIC DISC	41033-10000		20%		MURATA/ERIE	DD08B10N750101J500V	0
C2072		CERAMIC NPO	41033-12200		1%		VITRAMON	VP12BA221F	v
C2073		CERAMIC DISC	41033-31000		20%		MURATA/ERIE	DD12B10Z5U103M1KV	
C2074	CAPACITOR	CERAMIC DISC	41033-31000		20%		MURATA/ERIE	DD12B10Z5U103M1KV	
C2075	CAPACITOR	ALUM ELECT 10/40	48050-01000		20%		SIEMENS	85200/10/40V	9
C2076	CAPACITOR	CERAMIC DISC	41033-03000	30P	5%		MURATA/ERIE	GG300K	1
C2077	CAPACITOR	TANTALUM 1.5/25V	47031-01590	1.5	20%	31918		TAP 1.5M25	•
C2078	CAPACITOR	CERAMIC DISC	41033-31000	0.01	20%	51406	MURATA/ERIE	DD12B10Z5U103M1KV	
C2079	CAPACITOR	CERAMIC DISC	41033-02200	22P	20%		MURATA/ERIE	DD05B10NP0220J500V	
C2080	CAPACITOR	CERAMIC DISC	41033-01000	10P	20%	51406	MURATA/ERIE	DD05B10N750100J500V	
C2081	CAPACITOR	TANTALUM 10/25V	47031-10000	10	20%	31918		TAP 10M25	4
C2082	CAPACITOR	CERAMIC DISC	41033-10000	100P	20%	51406	MURATA/ERIE	DD08B10N750101J500V	
C2083	CAPACITOR	TANTALUM 10/25V	47031-10000	10	20%	31918	ITT	TAP 10M25	
C2084	CAPACITOR	FILM SELECTED	45042-42203	0.22	SEL	68919	WIMA	MKS2 0.22/63/5W	
C2085	CAPACITOR	FILM SELECTED	45042-32203	0.022	SEL	68919	WIMA	MKS2 0.022/63/5W	
C2086	CAPACITOR	CERAMIC NPO	41033-20010	2000P	1%	95275	VITRAMON	VP12BA202F	
C2087	CAPACITOR	FILM SELECTED	45042-42203	0.22	SEL	68919	WIMA	MKS2 0.22/63/5W	
C2088	CAPACITOR	FILM SELECTED	45042-32203	0.022	SEL	68919	WIMA	MKS2 0.022/63/5W	
C2089	CAPACITOR	CERAMIC NPO	41033-20010	2000P	1%	95275	VITRAMON	VP12BA202F	
C2090	CAPACITOR	CERAMIC DISC	41033-00330	3P3	20%	51406	MURATA/ERIE	DD05B10N7503R3D1KV	
C2091	CAPACITOR	CERAMIC DISC	41033-00330	3P3	20%	51406	MURATA/ERIE	DD05B10N7503R3D1KV	
C2092		CERAMIC DISC	41033-31000		20%	51406	MURATA/ERIE	DD12B10Z5U103M1KV	
		ALUM ELE RAD 10/40	48050/01000	10	20%	25088	SIEMENS	85200/10/40V	
	CAPACITOR	CERAMIC DISC	41033-31000	0.01			MURATA/ERIE	DD12B10Z5U103M1KV	
C2095	CAPACITOR	ALUM ELECT 10/40	48050-01000	10			SIEMENS	85200/10/40V	
C2096	CAPACITOR	CERAMIC DISC	41033-13300	330P	20%	51406	MURATA/ERIE	DD12F10N750331J500V	

		AMBER EL	LECT				MANUFACTURER	QTY
	DESCRIPTION	PART NUMBER VA		OL	FSC	MANUFACTURER	PART NUMBER	USED
DESIG	DESCRIPTION							
	CAPACITOR CERAMIC DISC	41033-01000 10		20%	51406	MURATA/ERIE	DD05B10N750100J500V	
C2097	ALAMA MI MOT 407/0	48050-01000 10		20%	25088	SIEMENS	85200/10/40V	
C2099	40//0	48050-01000 10	0 2			SIEMENS	85200/10/40V	
C2100		48050-01000 1	0 2	20%	25088	SIEMENS	85200/10/40V	
C2101	CAPACITOR ALUM ELECT 10/40	48050-01000 1	0 2			SIEMENS	85200/10/40V	
C2102	CAPACITOR FILM	45042-13302 3	30P 2	20%		MURATA/ERIE	DD12F10N750331J500V	
C2103	CAPACITOR FILM	45042-42200 0		5%	68919		MKS2 0.22/63/5W	1
C2104	CAPACITOR CERAMIC DISC	41033-02200 2				MURATA/ERIE	DD05B10NP0220J500V	3
	CAPACITOR MONOLYTHIC	42031-41000 0			04222		SR205C104MAA	3
C2106	CAPACITOR MONOLYTHIC	42031-41000 0			04222		SR205C104MAA	
C2107	CAPACITOR CERAMIC DISC	41033-02200 2				MURATA/ERIE	DD05B10NP0220J500V DD05B10N750100J500V	,
C2108	CAPACITOR CERAMIC DISC	41033-01000 1		20%		MURATA/ERIE		
	CAPACITOR MONOLYTHIC	42031-41000 0			04222		SR205C104MAA DD09B10N750151J500\	, 1
C2110	CAPACITOR CERAMIC DISC	41033-15000 1				MURATA/ERIE	85200/10/40V	•
	CAPACITOR ALUM ELECT 10/40	48050-01000 1				SIEMENS	DD12B10Z5U103M1KV	
C2112	CAPACITOR CERAMIC DISC	41033-31000				MURATA/ERIE	85200/10/40V	
C2113		48050-01000 1				SIEMENS	DD 12B10Z5U103M1KV	
	CAPACITOR CERAMIC DISC	41033-31000				MURATA/ERIE	TAP 1.5M25	
	CAPACITOR TANTALUM 1.5/25V	47031-01590			31918		DD10F10N750221J500	v 1
	CAPACITOR CERAMIC DISC	41033-22000				MURATA/ERIE	TAP 1.5M25	•
C2117	CAPACITOR TANTALUM 1.5/25V	47031-01590	1.5	20%	31710	3 ITT	101 11311111	
C2118		0447/ /4500			14227	MOTOROLA	1N4150	40
D2001		21136-41500				MOTOROLA	1N4150	
D2002	SEMICON DIODE GEN PURPOSE	21136-41500				MOTOROLA	1N4150	
D2003		21136-41500				3 MOTOROLA	1N4150	
D2004		21136-41500 21136-41500				3 MOTOROLA	1N4150	
D2005	TORREST AND AND DESCRIPTIONS	21136-41500				3 MOTOROLA	1N4150	
D2006		21136-41500				3 MOTOROLA	1N4150	
D2007		21136-41500				3 MOTOROLA	1N4150	
D2008		21136-41500				3 MOTOROLA	1N4150	
D2009	ATH BURDOCT	21136-41500			1A22	3 MOTOROLA	1N4150	
D2010		21136-41500			1A22	3 MOTOROLA	1N4150	
D2011	SEMICON DIODE GEN PURPOSE	21136-41500			1A22	3 MOTOROLA	1n4150	
		21136-41500			1A22	3 MOTOROLA	1n4150	
D2013	SEMICON DIODE GEN PURPOSE	21136-41500			1A22	3 MOTOROLA	1N4150	
	SEMICON DIODE GEN PURPOSE	21136-41500			1A22	3 MOTOROLA	1N4150	
D201.	SEMICON DIODE GEN PURPOSE	21136-41500			1A22	23 MOTOROLA	1N4150	
n2010	7 SEMICON DIODE GEN PURPOSE	21136-41500			1A22	23 MOTOROLA	1N4150	
D201	TORONTO MANAGEMENT PROPERTY	21136-41500				23 MOTOROLA	1N4150	
D201	TORONTO TORONTO TORONTO	21136-41500			1A22	23 MOTOROLA	1N4150	
D202		21136-41500				23 MOTOROLA	1N4150	
D202		21136-41500	l			23 MOTOROLA	1N4150	
D202		21136-41500	1			23 MOTOROLA	1N4150	
	3 SEMICON DIODE GEN PURPOSE	21136-41500				23 MOTOROLA	1N4150	
D202		21136-41500)			23 MOTOROLA	1N4150	
	5 SEMICON DIODE GEN PURPOSE	21136-41500				23 MOTOROLA	1N4150	
D202	6 SEMICON DIODE GEN PURPOSE	21136-41500				23 MOTOROLA	1N4150	
D202	7 SEMICON DIODE GEN PURPOSE	21136-41500				23 MOTOROLA	1N4150	
D202	8 SEMICON DIODE GEN PURPOSE	21136-41500				23 MOTOROLA	1N4150	
D202	9 SEMICON DIODE GEN PURPOSE	21136-41500				23 MOTOROLA	1N4150 1N4150	
D203	SO SEMICON DIODE GEN PURPOSE	21136-41500	J		182	23 MOTOROLA	184120	

		AMBER	ELECT			MANUFACTURER	
DESIG		PART NUMBER	VALUE TOL	FSC	MANUFACTURER	PART NUMBER	
D2031	SEMICON DIODE GEN PURPOSE	21136-41500		1A223	MOTOROLA	1n4150	
D2032	SEMICON DIODE ZENER SEMICON DIODE ZENER	21207-07531	6.2V	1A223	MOTOROLA	1N753A	2
D2033	SEMICON DIODE ZENER	21207-07531	6.2V	1A223	MOTOROLA	1N753A	_
D2034		21136-41500			MOTOROLA	1N4150	
D2035					MOTOROLA	1N4150	
D2036	SEMICON DIODE GEN PURPOSE	21136-41500			MOTOROLA	1N4150	
D2037	SEMICON DIODE GEN PURPOSE	21107-41500			MOTOROLA	1N4150	
D2038	SEMICON DIODE GEN PURPOSE	21136-41500			MOTOROLA	1N4150	
D2039		21107-62630			MOTOROLA	1N6263	1
D2040	SEMICON DIODE GEN PURPOSE	21136-41500			MOTOROLA	1N4150	•
D2041	SEMICON DIODE GEN PURPOSE	21136-41500			MOTOROLA	1N4150	
D2042		21135-40040				1N4004	4
D2043					MOTOROLA	1N4004	•
D2044					MOTOROLA	1N751A	2
D2045	SEMICON DIODE ZENER	21207-07511	5.10	1A223	MOTOROLA	1N751A	_
D2046	SEMICON DIODE ZENER SEMICON RECTIFIER SEMICON RECTIFIER	21135-40040	200V	1A223	MOTOROLA	1N4004	
D2047	SEMICON RECTIFIER	21135-40040	200V	1A223	MOTOROLA	1N4004	
D2048	SEMICO LED RECT RED	21531-57124		58361		MV57124	2
D2049						MV57124	
J2001					ANSLEY	609-1678	2
J2002		72016-16780			ANSLEY	609-1678	2
J2003		78007-20410			MOLEX	22-29-2041	
J2004					MOLEX	22-29-2041	
J2005		78007-20410	4 PIN		MOLEX	22-29-2041	
J2006	NOT USED	70007 20410	T FAN	21204	HOLEX	22-29-2041	
J2007	CONNECTOR HEADER LATCH	78007-20410	4 DIN	2726/	MOLEX	22-29-2041	
J2008	CONNECTOR HEADER LATCH				MOLEX	22-29-2041	
J2009	CONNECTOR HEADER LATCH				MOLEX	22-29-2041	
J2010	CONNECTOR HEADER LATCH						
J2011	CONNECTOR HEADER LATCH					22-29-2041	
J2012	CONNECTOR HEADER LATCH	78007-20410	4 PIN	27264	MOLEX		
J2013	CONNECTOR HEADER LATCH	78007-20410	4 DIN	2726/	MOLEX	22-29-2041	
J2014	NOT USED	70007 20410	4 FAN	21204	HOLEX	22-29-2041	
J2015							
J2016	NOT USED						
Q2001		22392-48610		17856	SILICONIX	2N4861A	3
Q2002		22492-38200			MOTOROLA	2N3820	3
Q2003		22392-09200			SILICONIX	J-111	2
Q2004	SEMICON FET P CHANNEL	22492-38200			MOTOROLA	2N3820	2
02005		22392-48610			SILICONIX	2N4861A	
Q2006	SEMICON FET P CHANNEL	22492-38200			MOTOROLA	2N3820	
Q2007		22392-09200			SILICONIX	J-111	
Q2008	SEMICON TRANSISTOR PNP GP	22622-44030			MOTOROLA	2N4403	7
92009	SEMICON SHUNT REGULATOR	25992-43100		01295		TL431CLP	3 1
Q2010	SEMICON FET N CHANNEL	22392-48610			SILICONIX	2N4861A	1
92011	SEMICON TRANSISTOR NPN GP	22522-44010			MOTOROLA	2N4401	6
Q2012		22522-44010			MOTOROLA	2N4401 2N4401	6
Q2013		22522-44010			MOTOROLA	2N4401 2N4401	
Q2014	SEMICON TRANSISTOR NPN GP	22522-44010			MOTOROLA	2N4401 2N4401	
Q2015	SEMICON TRANSISTOR PNP GP	22622-44030			MOTOROLA		
==-11	CENTED INSTITUTE OF			امددع	HU I UKULA	2N4403	

		AMBER					MANUFACTURER	
DESIG	DESCRIPTION					MANUFACTURER	PART NUMBER	
	SEMICON TRANSISTOR PNP GP				1A223	MOTOROLA	2N4403	
	SEMICON TRANSISTOR NPN GP	22522-44010			1A223	MOTOROLA	2N4401	
	SEMICON TRANSISTOR NPN GP	22522-44010				MOTOROLA	2N4401	
	SEMICON TRANSISTOR NPN POWER	22522-00700				MOTOROLA	MPSU07	1
	SEMICON TRANSISTOR NPN POWER	22622-05000				MOTOROLA	MPSU57	1
	SEMICON LED/LDR	21511-65000				CLAIREX		1
	RESISTOR CF 1/4W	32033-20030	200K	5%		ALLEN BRADLEY		1
R2002		32033-12040	1M2	5%		ALLEN BRADLEY		1
R2003	RESISTOR CF 1/4W	32033-10050	10M	5%	01121	ALLEN BRADLEY	CB1065	4
R2004	RESISTOR CF 1/4W	32033-22020		5%		ALLEN BRADLEY		_
R2005	RESISTOR CF 1/4W	32033-33020	33K	5%		ALLEN BRADLEY		1
R2006	RESISTOR CF 1/4W	32033-10040		5%		ALLEN BRADLEY		2
R2007	RESISTOR CF 1/4W	32033-10030				ALLEN BRADLEY		10
	RESISTOR CF 1/4W	32033-47030				ALLEN BRADLEY		1
R2009	RESISTOR CF 1/4W	32033-10010		5%		ALLEN BRADLEY		5 1
R2010	RESISTOR CF 1/4W	32033-20020		5%		ALLEN BRADLEY		1
R2011		32033-10010		5%		ALLEN BRADLEY		
	RESISTOR CF 1/4W	32033-10010		5%		ALLEN BRADLEY		
	RESISTOR CF 1/4W	32033-10030				ALLEN BRADLEY		
	RESISTOR CF 1/4W	32033-10030				ALLEN BRADLEY ALLEN BRADLEY		
	RESISTOR CF 1/4W	32033-10050		5%		ALLEN BRADLEY		2
	RESISTOR CF 1/4W	32033-39010		5%		ALLEN BRADLE		2
	RESISTOR CF 1/4W	32033-22040		5%		ALLEN BRADLET		-
	RESISTOR CF 1/4W	32033-10050		5% 5%		ALLEN BRADLE		
	RESISTOR CF 1/4W	32033-10040 32033-39010		5%		ALLEN BRADLE		
		32033-39010				ALLEN BRADLE		
R2021		32033-10030		5%		ALLEN BRADLE		12
	RESISTOR CF 1/4W	32033-10000		5%		ALLEN BRADLE		
	RESISTOR CF 1/4W	32033-10000		5%		ALLEN BRADLE		8
	RESISTOR CF 1/4W RESISTOR CF 1/4W	32033-22020		5%		ALLEN BRADLE		
	KEGIGIGI G. I, III	32033-22020		5%		1 ALLEN BRADLE		
		32033-22020		5%		1 ALLEN BRADLE		
	RESISTOR CF 1/4W	32033-56020	0 56K		0112	1 ALLEN BRADLE	Y CB5635	4
	RESISTOR CF 1/4W	32033-56020	0 56K	5%		1 ALLEN BRADLE		
	RESISTOR CF 1/4W	32033-56020 32033-10030	0 100K	5%		1 ALLEN BRADLE		
	RESISTOR MF 1/4W	32035-2673				6 CORNING		2
	RESISTOR MF 1/4W	32035-2003				6 CORNING	SMA4-200K-1	2
	RESISTOR MF 1/4W	32035-2673			2454	6 CORNING	SMA4-267K-1	
R2034		32035-2003	0 200K	1%	2454	6 CORNING	SMA4-200K-1	
R2035		32033-1000	0 100	5%	0112	1 ALLEN BRADLE	Y CB1015	
R2036		32033-1003	0 100K	5%		1 ALLEN BRADLE		
R2037		32033-5602	0 56K	5%		1 ALLEN BRADLE		
R2038		32033-2202	0 22K	5%		1 ALLEN BRADLE		
R2039		32033-3301	0 3K3	5%		1 ALLEN BRADLE		1
	RESISTOR CF 1/4W	32033-1000		5%		1 ALLEN BRADLE		
R2041		32033-1003				1 ALLEN BRADLE		
R2043		32033-1003				1 ALLEN BRADLE		
R2044		32033-1003	0 100	5%		1 ALLEN BRADLE		
R2045		32033-6200				1 ALLEN BRADLE		
R2046	RESISTOR CF 1/4W	32033-1000				1 ALLEN BRADLE		^
R2047	RESISTOR MF 1/4W	32035-4991	0 4K99	7 1%	2454	6 CORNING	SMA4-4.99K-1	8

		AMBER	ELECT				MANUFACTURER	QTY
DESIG	DESCRIPTION	PART NUMBER	VALUE	TOL	FSC	MANUFACTURER	PART NUMBER	USED
						•••••		
R2048	RESISTOR MF 1/4W	32035-43210	4K32	1%	24546	CORNING	SMA4-4.32K-1	
R2049	RESISTOR MF 1/4W	32035-49910	4K99	1%	24546	CORNING	SMA4-4.99K-1	
R2050	RESISTOR MF 1/4W	32035-75010	7K5	1%	24546	CORNING	SMA4-7.5K-1	3
R2051	RESISTOR MF 1/4W	32035-68120	68K1	1%	24546	CORNING	SMA4-68.1K-1	1
R2052	RESISTOR CF 1/4W	32033-10000	100	5%	01121	ALLEN BRADLEY	CB1015	
R2053	RESISTOR CF 1/4W	32033-22010	2K2	5%	01121	ALLEN BRADLEY	CB2225	5
R2054	RESISTOR MF 1/4W	32035-24920	24K9	1%	24546	CORNING	SMA4-24.9K-1	1
R2055	RESISTOR MF 1/4W	32035-10020	10K0	1%	24546	CORNING	SMA4-10K-1	9
R2056	RESISTOR MF 1/4W	32035-35710	3K57	1%	24546	CORNING	SMA4-3.57K-1	1
R2058	RESISTOR MF 1/4W	32035-10020	10K0	1%	24546	CORNING	SMA4-10K-1	
R2059	RESISTOR MF 1/4W	32035-47510	4K75	1%	24546	CORNING	SMA4-4.75K-1	1
R2060	RESISTOR MF 1/4W	32035-14320	14K3	1%	24546	CORNING	SMA4-14.3K-1	1
R2061	RESISTOR MF 1/4W	32035-33210	3K32	1%	24546	CORNING	SMA4-3.32K-1	1
R2062	RESISTOR CF 1/4W	32033-27010	2K7	5%	01121	ALLEN BRADLEY	CB2725	2
R2063	RESISTOR CF 1/4W	32033-03300	33	5%	01121	ALLEN BRADLEY	CB3305	1
R2064	RESISTOR MF 1/4W	32035-04909	49R9	1%	24546	CORNING	SMA4-49.9R-1	2
R2065	RESISTOR MF 1/4W	32035-04909	49R9	1%	24546	CORNING	SMA4-49.9R-1	
R2067	RESISTOR MF 1/4W	32035-68110	6K81	1%	24546	CORNING	SMA4-6.81K-1	3
R2068	RESISTOR MF 1/4W	32035-49910	4K99	1%	24546	CORNING	SMA4-4.99K-1	
R2069	RESISTOR MF 1/4W	32035-49910	4K99	1%	24546	CORNING	SMA4-4.99K-1	
R2070	RESISTOR MF 1/4W	32035-49910	4K99	1%	24546	CORNING	SMA4-4.99K-1	
R2071	RESISTOR MF 1/4W	32035-49910	4K99	1%	24546	CORNING	SMA4-4.99K-1	
R2072	RESISTOR CF 1/4W	32033-22000	220	5%	01121	ALLEN BRADLEY	CB2215	7
R2073	RESISTOR CF 1/4W	32033-22000	220	5%	01121	ALLEN BRADLEY	CB2215	
R2074	RESISTOR CF 1/4W	32033-22000	220	5%	01121	ALLEN BRADLEY	CB2215	
R2075	RESISTOR MF 1/4W	32035-68110	6K81	1%	24546	CORNING	SMA4-6.81K-1	
R2076	RESISTOR MF 1/4W	32035-10020	10K0	1%	24546	CORNING	SMA4-10K-1	
R2077	RESISTOR MF 1/4W	32035-10020	10K0	1%	24546	CORNING	SMA4-10K-1	
R2078	RESISTOR MF 1/4W	32035-10020	10K0	1%	24546	CORNING	SMA4-10K-1	
R2079	RESISTOR MF 1/4W	32035-10020	10K0	1%	24546	CORNING	SMA4-10K-1	
R2080	RESISTOR CF 1/4W	32033-47010	4K7	5%	01121	ALLEN BRADLEY	CB4725	9
R2081	RESISTOR MF 1/4W	32035-38310	3K83	1%	24546	CORNING	SMA4-3.83K-1	3
R2082	RESISTOR MF 1/4W	32035-38310	3K83	1%	24546	CORNING	SMA4-3.83K-1	
R2083	RESISTOR CF 1/4W	32033-20010	2K0	5%	01121	ALLEN BRADLEY	CB2025	4
R2084	RESISTOR MF 1/4W	32035-10020	10K0	1%	24546	CORNING	SMA4-10K-1	
R2085	RESISTOR MF 1/4W	32035-27420	27K4	1%	24546	CORNING	SMA4-27.4K-1	1
R2087	RESISTOR CF 1/4W	32033-47010	4K7	5%	01121	ALLEN BRADLEY	CB4725	
R2088	RESISTOR MF 1/4W	32035-40220	40K2	1%	24546	CORNING	SMA4-40.2K-1	1
R2089	RESISTOR MF 1/4W	32035-20020	20K0	1%	24546	CORNING	SMA4-20K-1	1
R2090	RESISTOR CF 1/4W	32033-10010	1K0	5%	01121	ALLEN BRADLEY	CB1025	
R2091	RESISTOR CF 1/4W	32033-22010	2K2	5%	01121	ALLEN BRADLEY	CB2225	
R2092	RESISTOR CF 1/4W	32033-22010	2K2	5%	01121	ALLEN BRADLEY	CB2225	
R2093	RESISTOR MF 1/4W	32035-26110	2K61	1%	24546	CORNING	SMA4-2.61K-1	1
R2094	RESISTOR MF 1/4W	32035-38310	3K83	1%	24546	CORNING	SMA4-3.83K-1	
R2095	RESISTOR MF 1/4W	32035-68110	6K81	1%	24546	CORNING	SMA4-6.81K-1	
R2096	RESISTOR CF 1/4W	32033-10020	10K	5%	01121	ALLEN BRADLEY	CB1035	7
R2097	RESISTOR MF 1/4W	32035-39220	39K2	1%	24546	CORNING	SMA4-39.2K-1	1
R2098	RESISTOR CF 1/4W	32033-47010	4K7	5%	01121	ALLEN BRADLEY	CB4725	
R2099	RESISTOR CF 1/4W	32033-06200	62	5%	01121	ALLEN BRADLEY	CB6205	1
R2100	RESISTOR CF 1/4W	32033-56030	560K	5%	01121	ALLEN BRADLEY	CB5645	2
R2101	RESISTOR MF 1/4W	32035-31610	3K16	1%	24546	CORNING	SMA4-3.16K-1	1
R2102	RESISTOR MF 1/4W	32035-57620	5K76	1%	24546	CORNING	SMA4-5.76K-1	1

		AMBER	ELECT				MANUFACTURER	QTY
DESIG	DESCRIPTION	PART NUMBER	VALUE	TOL	FSC	MANUFACTURER	PART NUMBER	USED
D2103	PESISTOR OF 1/49	32033-10020	10K	5%	01121	ALLEN BRADLEY	CB1035	
P2104	RESISTOR CF 1/4W	32033-24010	2K4	5%	01121	ALLEN BRADLEY	CB2425	1
R2105	RESISTOR CF 1/4W	32033-68010	6K8	5%	01121	ALLEN BRADLEY	CB6825	1
P2106	RESISTOR CF 1/4W	32033-10000	100	5%	01121	ALLEN BRADLEY		
R2107	RESISTOR CF 1/4W RESISTOR MF 1/4W RESISTOR CF 1/4W	32033-15020	15K	5%	01121	ALLEN BRADLEY	CB1535	1
R2108	RESISTOR MF 1/4W	32035-10020	10K0	1%		CORNING		
R2109	RESISTOR CF 1/4W			5%		ALLEN BRADLEY		
R2110	RESISTOR CF 1/4W	32033-56010		5%		ALLEN BRADLEY		4
						ALLEN BRADLEY		
R2112		32033-10020		5%		ALLEN BRADLEY		
R2113	RESISTOR CF 1/4W	32033-10020	10K	5%		ALLEN BRADLEY		
R2114	RESISTOR CF 1/4W	32033-56010	5K6	5%		ALLEN BRADLEY		
R2115	RESISTOR CF 1/4W RESISTOR CF 1/4W RESISTOR CF 1/4W RESISTOR CF 1/4W	32033-10020	10K	5%		ALLEN BRADLEY		
R2116	RESISTOR CF 1/4W	32033-22010	2K2	5% ===		ALLEN BRADLEY ALLEN BRADLEY		
R2117	RESISTOR CF 1/4W	32033-10020	10K	5%		ALLEN BRADLEY		
		32033-27010	2K/	5% 5%		ALLEN BRADLEY		
R2119	RESISTOR CF 1/4W	32033-22010	2K2	5% 5%		ALLEN BRADLEY		
R2120	RESISTOR CF 1/4W	32033-56010)) KO	5% =~		ALLEN BRADLEY		
R2121	RESISTOR CF 1/4W	32033-47010	9 4K/	5% 5%		ALLEN BRADLEY		
R2122	RESISTOR CF 1/4W	32033-30010	100	5%		ALLEN BRADLEY		
R2124	RESISTOR CF 1/4W	32033-10000) 100	5%		1 ALLEN BRADLEY		
R2125	RESISTOR CF 1/4W	32033-20010	1110	5%		1 ALLEN BRADLEY		
R2126	RESISTOR CF 1/4W	32033-10010	1 447	5%		1 ALLEN BRADLE		
R2128	RESISTOR CF 1/4W RESISTOR MF 1/4W	32035-47010	1 4KOO	1%		6 CORNING		
R2129	RESISTOR MF 1/4W	32035 47710	1 4K99	1%	2454	6 CORNING	SMA4-4.99K-1	
R2130	RESISION OF 1/4W	32033 4771	100K	5%		1 ALLEN BRADLEY		
RZ131	RESISTOR OF 1/4W	32033-4702	0 47K	5%		1 ALLEN BRADLE		2
RZ 132	RESISTOR CF 1/4W RESISTOR CF 1/4W RESISTOR CF 1/4W RESISTOR CF 1/4W	32033-3304	0 3M3	5%		1 ALLEN BRADLE		2
RE133	RESISTOR CF 1/4W	32033-3304	0 3M3	5%		1 ALLEN BRADLE		
R2137	RESISTOR CF 1/4W	32033-4701	0 4K7	5%	0112	1 ALLEN BRADLE	r CB4725	
P2140	RESISTOR CF 1/4W	32033-4701	0 4K7	5%	0112	1 ALLEN BRADLE	Y CB4725	
P2141	RESISTOR CF 1/4W	32033-2202	0 22K	5%	0112	1 ALLEN BRADLE	Y CB2235	
p2142	PESISTOR CE 1/4W	32033-4701	0 4K7	5%	0112	1 ALLEN BRADLE		
R2143	RESISTOR CF 1/4W RESISTOR CF 1/4W	32033-2202	0 22K	5%	0112	1 ALLEN BRADLE		
R2144	RESISTOR CF 1/4W	32033-4701	0 4K7	5%	0112	1 ALLEN BRADLE		
R2145	RESISTOR CF 1/4W	32033-3300	0 330	5%	0112	1 ALLEN BRADLE		1
	RESISTOR CF 1/4W	32033-1000	0 100	5%		1 ALLEN BRADLE		
	RESISTOR CF 1/4W	32033-1000	0 100	5%		1 ALLEN BRADLE		
R2148	RESISTOR CF 1/4W	32033-5602	0 56K	5%		1 ALLEN BRADLE		
R2149	RESISTOR CF 1/4W	32033-4702	0 47K	5%	0112	21 ALLEN BRADLE	Y CB4735	
R2150	JUMPER							
R2152	RESISTOR 1/4W CF	32033-1002				21 ALLEN BRADLE		2
R2153	RESISTOR MF 1/4W	32035-1001				46 CORNING	SMA4-1K-1	2
R2154	RESISTOR CF 1/4W	32033-1005		5%		21 ALLEN BRADLE		
	RESISTOR MF 1/4W	32035-1002				46 CORNING	SMA4-10K-1	2
	RESISTOR MF 1/4W	32035-2491				46 CORNING	SMA4-2.49K-1	2
	RESISTOR MF 1/4W	32035-1001				46 CORNING	SMA4-1K-1 SMA4-7.5K-1	
	RESISTOR MF 1/4W	32035-7501				46 CORNING		
R2159	RESISTOR MF 1/4W	32035-2491				46 CORNING	SMA4-2.49K-1	1
R2160	4 . 4	32035-1652				46 CORNING	SMA4-16K-1 SMA4-4.32K-1	2
R2161	RESISTOR MF 1/4W	32035-432	IU 4K5	د اگ	240	46 CORNING	STINT T.JEN 1	-

DESIG	DESCRIPTION	AMBER PART NUMBER	ELECT VALUE	TOL	FSC	MANUFACTURER	MANUFACTURER PART NUMBER	QTY USED
D2142	RESISTOR MF 1/4W	32035-45300	/57		2/5/4	CORNING		
	RESISTOR CF 1/4W	32033-45500		1% 5%		ALLEN BRADLEY	SMA4-453R-1	1
	RESISTOR CF 1/4W	32033-22000		5%		ALLEN BRADLEY		
	RESISTOR CF 1/4W	32033-22000		5%		ALLEN BRADLEY		
	RESISTOR CF 1/4W	32033-22000		5%		ALLEN BRADLEY		
	RESISTOR CF 1/4W	32033-62000		5%		ALLEN BRADLEY		2
	RESISTOR CF 1/4W	32033-82010		5%		ALLEN BRADLEY		1
	RESISTOR CF 1/4W	32033-15000				ALLEN BRADLEY		1
	RESISTOR CF 1/4W	32033-01000		5%		ALLEN BRADLEY		•
	RESISTOR MF 1/4W	32035-30100		1%		CORNING	SMA4-301R-1	4
	RESISTOR MF 1/4W	32035-30100		1%		CORNING	SMA4-301R-1	•
	RESISTOR CF 1/4W	32033-01000		5%		ALLEN BRADLEY		
	RESISTOR MF 1/4W	32035-30100		1%		CORNING	SMA4-301R-1	
	RESISTOR MF 1/4W	32035-40200	402	1%	24546	CORNING	SMA4-402R-1	2
	RESISTOR MF 1/4W	32035-86600	866	1%	24546	CORNING	SMA4-866R-1	14
R2178	RESISTOR MF 1/4W	32035-59000	590	1%	24546	CORNING	SMA4-590R-1	12
	RESISTOR MF 1/4W	32035-86600	866	1%	24546	CORNING	SMA4-866R-1	
R2180	RESISTOR MF 1/4W	32035-59000	590	1%	24546	CORNING	SMA4-590R-1	
R2181	RESISTOR MF 1/4W	32035-86600	866	1%	24546	CORNING	SMA4-866R-1	
R2182	RESISTOR MF 1/4W	32035-59000	590	1%	24546	CORNING	SMA4-590R-1	
R2183	RESISTOR MF 1/4W	32035-86600	866	1%	24546	CORNING	SMA4-866R-1	
R2184	RESISTOR MF 1/4W	32035-59000	590	1%	24546	CORNING	SMA4-590R-1	
R2185	RESISTOR MF 1/4W	32035-86600	866	1%	24546	CORNING	SMA4-866R-1	
R2186	RESISTOR MF 1/4W	32035-59000	590	1%	24546	CORNING	SMA4-590R-1	
R2187	RESISTOR MF 1/4W	32035-86600	866	1%	24546	CORNING	SMA4-866R-1	
R2188	RESISTOR MF 1/4W	32035-59000	590	1%	24546	CORNING	SMA4-590R-1	
R2189	RESISTOR MF 1/4W	32035-86600	866	1%	24546	CORNING	SMA4-866R-1	
R2190	RESISTOR MF 1/4W	32035-66500	665	1%	24546	CORNING	SMA4-665R-1	2
R2191	RESISTOR MF 1/4W	32035-93100	931	1%	24546	CORNING	SMA4-931R-1	2
	NOT USED							
	RESISTOR CF 1/4W	32033-01000	10	5%	01121	ALLEN BRADLEY	CB1005	4
	RESISTOR CF 1/4W	32033-01000		5%		ALLEN BRADLEY		
	RESISTOR CF 1/4W	32033-02200		5%		ALLEN BRADLEY		4
	RESISTOR CF 1/4W	32033-02200		5%		ALLEN BRADLEY		
R2197	*	32033-02200		5%		ALLEN BRADLEY		
R2198	RESISTOR CF 1/4W	32033-02200		5%		ALLEN BRADLEY		
	RESISTOR MF 1/4W	32035-30100		1%		CORNING	SMA4-301R-1	
	RESISTOR MF 1/4W	32035-40200		1%		CORNING	SMA4-402R-1	
R2201	RESISTOR MF 1/4W	32035-86600		1%		CORNING	SMA4-866R-1	
	RESISTOR MF 1/4W	32035-59000		1%		CORNING	SMA4-590R-1	
R2203		32035-86600		1%		CORNING	SMA4-866R-1	
R2204	RESISTOR MF 1/4W	32035-59000		1%		CORNING	SMA4-590R-1	
R2205	RESISTOR MF 1/4W	32035-86600		1%		CORNING	SMA4-866R-1	
R2206 R2207	RESISTOR MF 1/4W	32035-59000		1%		CORNING	SMA4-590R-1	
R2207	RESISTOR MF 1/4W RESISTOR MF 1/4W	32035-86600 32035-59000		1% 1%		CORNING	SMA4-866R-1	
R2209	RESISTOR MF 1/4W	32035-86600		1%		CORNING CORNING	SMA4-590R-1 SMA4-866R-1	
R2210	RESISTOR MF 1/4W	32035-59000		1%		CORNING	SMA4-590R-1	
R2211	RESISTOR MF 1/4W	32035-86600		1%		CORNING	SMA4-866R-1	
R2212	RESISTOR MF 1/4W	32035-59000		1%		CORNING	SMA4-590R-1	
R2213	RESISTOR MF 1/4W	32035-86600		1%		CORNING	SMA4-866R-1	
R2214		32035-66500		1%		CORNING	SMA4-665R-1	
****** ! T		2233 00300					EINIT WOOD I	

25010	DECCRIPTION.	AMBER	ELECT	TO	F00	MANUELACTURED	MANUFACTURER	QTY
DESIG	DESCRIPTION	PARI NUMBER	VALUE	10L		MANUFACTURER	PART NUMBER	USED
R2215	RESISTOR MF 1/4W	32035-93100	931	1%	24546	CORNING	SMA4-931R-1	
R2216	RESISTOR CF 1/4W	32033-22040	2M2	5%	01121	ALLEN BRADLEY	CB2255	
R2217	RESISTOR CF 1/4W	32033-10000	100	5%	01121	ALLEN BRADLEY	CB1015	
R2218	RESISTOR CF 1/4W	32033-20010	2K0	5%	01121	ALLEN BRADLEY	CB2025	
R2219	RESISTOR CF 1/4W	32033-20010	2K0	5%	01121	ALLEN BRADLEY	CB2025	
R2220	RESISTOR MF 1/4W	32035-64900		1%		CORNING	SMA4-649R-1	1
R2221	RESISTOR MF 1/4W	32035-75010	7K5	1%		CORNING	SMA4-7.5K-1	
S2001	PUSHBUTTON SWITCH ASSEMBLY	83116-10460				•	F104X6UT6UT6UT2UGR	1
	PUSHBUTTON SWITCH	83116-10460				ITT/SCHADOW	PART/S2001	
S2003	PUSHBUTTON SWITCH	83116-10460				ITT/SCHADOW	PART/S2001	
S2004	PUSHBUTTON SWITCH	83116-10460				ITT/SCHADOW	PART/S2001	
S2005	ROTARY SWITCH 3 POL 11 POS	81113-31319				ITW/RCL	44-614-0002	1
U2001	SEMICON OP AMP BI-FET DUAL	25111-07200			01295		TL-072CP	1 1
U2002 U2003	SEMICON OF AMP TO NOISE IN	25311-31800 25311-55340				NATIONAL SIGNETICS	LM318N NE5534AN	13
U2003	SEMICON OP AMP LO NOISE LIN SEMICON LINEAR DUAL OTA	25430-32800			3L585		CA3280E	2
U2005	SEMICON OP AMP BI-FET DUAL	25111-06200			01295		TL-062CP	2
	SEMICON OF AMP FET	25312-41100				NATIONAL	LF411CN	3
U2007	SEMICON OF AMP FET	25312-41100				NATIONAL	LF411CN	,
U2008	SEMICON OP AMP LO NOISE LIN	25311-55340				SIGNETICS	NE5534AN	
U2009		25311-55340				SIGNETICS	NESS34AN	
	SEMICON TRANSISTOR ARRAY SEL					MOTOROLA	MPQ6842	3
U2011		25311-55340			I CH66	SIGNETICS	NE5534AN	
	SEMICON OP AMP LO NOISE LIN	25311-55340			ICH66	SIGNETICS	NE5534AN	
U2013	SEMICON OP AMP LO NOISE LIN	25311-55340			1CH66	SIGNETICS	NE5534AN	
U2014	SEMICON CMOS SWITCH	24021-40530			3L585	RCA	CD4053BPC	2
U2015	SEMICON CMOS SWITCH	24021-40530			3L585	RCA	CD4053BPC	
U2016	SEMICON OF AMP LO NOISE LIN	25311-55340			I CH66	SIGNETICS	NE5534AN	
U2017	SEMICON OF AMP LO NOISE LIN	25311-55340			ICH66	SIGNETICS	NE5534AN	
U2018	SEMICON OF AMP BI-FET DUAL	25111-06200			01295	TI	TL-062CP	
U2019	SEMICON OP AMP J FET	25311-35600			27014	NATIONAL	LF356N	1
U2020	SEMICON OP AMP LO NOISE LIN	25311-55340			I CH66	SIGNETICS	NE5534AN	
		25430-32800			3 L585	RCA	CA3280E	
	SEMICON OF AMP LO NOISE LIN	25311-55340				SIGNETICS	NE5534AN	
U2023	· · · · · · · · · · · · · · · · · · ·	25311-55340				SIGNETICS	NE5534AN	
U2024	SEMICON BI-FET OP AMP	25111-07100			01295		TL-071CP	1
U2025	SEMICON TRANSISTOR ARRAY	23316-68420				MOTOROLA	MPQ6842	
U2026	SEMICON NEG REG 15V TO-92	25922-79150				MOTOROLA	MC79L15CP	1
U2027	SEMICON POS REG 15V TO-92	25922-78150				MOTOROLA	MC78L15CP	1
U2028	SEMICON OP AMP FET	25312-41100				NATIONAL	LF411CN	
U2029	SEMICON OF AMP LO NOISE LIN	25311-55340				SIGNETICS	NE5534AN	
U2030	SEMICON OP AMP LO NOISE LIN	25311-55340				SIGNETICS	NE5534AN	
U2031 V2001	SEMICON TRANSISTOR ARRAY RESISTOR TRIM CONTROL ST TA	23316-68420 51416-50020				MOTOROLA BOURNS	MPQ6842 3386P-1-503	
V2001	RESISTOR TRIM CONTROL ST TA	51416-50020				BOURNS	3386P-1-503	
V2002 V2003	RESISTOR TRIM CONTROL ST TA	51416-30020				BOURNS	3386P-1-102	2
V2003	RESISTOR TRIM CONTROL ST TA	51416-10000				BOURNS	3386P-1-101	1
V2004 V2005	RESISTOR TRIM CONTROL ST TA	51416-10000				BOURNS	3386P-1-503	8
V2005	RESISTOR TRIM CONTROL ST TA	51416-10020				BOURNS	3386P-1-103	2
V2007	RESISTOR TRIM CONTROL ST TA	51416-50020				BOURNS	3386P-1-503	_
V2008	RESISTOR TRIM CONTROL ST TA	51416-50020				BOURNS	3386P-1-503	
V2009	RESISTOR TRIM CONTROL ST TA	51416-50020				BOURNS	3386P-1-503	

		AMBER	ELECT				MANUFACTURER	QTY
DESIG	DESCRIPTION	PART NUMBER	VALUE	TOL	FSC	MANUFACTURER	PART NUMBER	USED
	*********						*******	
V2010	RESISTOR TRIM CONTROL ST TA	51416-50020	50K		32997	BOURNS	3386P-1-503	
V2011	RESISTOR TRIM CONTROL ST TA	51416-50020	50K		32997	BOURNS	3386P-1-503	
V2012	RESISTOR TRIM CONTROL ST TA	51416-10020	10K		32997	BOURNS	3386P-1-103	
V2013	RESISTOR TRIM CONTROL ST TA	51416-10010	1K		32997	BOURNS	3386P-1-102	
V2014	RESISTOR MF 1/4W	32035-12110	1K21	1%	24546	CORNING	SMA4-1.21K-1	1
V2015	QUAD COND PLASTIC POT CUSTOM	13501-72010	25K		38047	AMBER	13501-72010	1
V2017	RESISTOR TRIM CONTROL ST TA	51416-20010	2K		32997	BOURNS	3386P-1-201	1
V2106	CONDUCTIVE PLASTIC POT	51126-50014	5K		12697	CLAIROSTAT	VS388-5K	1

Amber model 3501 Distortion Measuring Set Linear Regulator & Battery Charger Board Part Number 13501-44006

		AMBER						QTY
DESIG	DESCRIPTION							USED
		13501-30400					13501-30400	1
	117111111111111111111111111111111111111	13501-44006			38047	AMBER	3501-440-06	1
		58750-00001			06915	RICHCO	WIT-18V	1
		71001-20310					10-18-2031	3
	CONNECTOR SOCKET PCB DIL	71014-21439				AUGAT	214-AG39D	3
C401	CAPACITOR ELECTRO 2200/25V	48030-22010	2200	20%	25088	SIEMENS	82000/2200UF/25V	1
C402	CAPACITOR MONOLYTIC CERAMIC	42031-41000	0.1	20%	04222	AVX	SR205C104MAA	9
C403	CAPACITOR MONOLYTIC CERAMIC	42031-41000	0.1	20%	04222	AVX	SR205C104MAA	
C404	CAPACITOR MONOLYTIC CERAMIC	42031-41000	0.1	20%	04222	AVX	SR205C104MAA	
C405	CAPACITOR CERAMIC DISC	41033-41000	0.1	20%	51406	MURATA/ERIE		1
C406	CAPACITOR PLASTIC FILM	45042-42201	0.22	5%	68919	WIMA	MKS2 0.22/63/5W	2
C407	CAPACITOR PLASTIC FILM	45042-31502	0.015	20%	68919	WIMA	MKS3 0.015/100/20W	3
C408	CAPACITOR PLASTIC FILM	45042-41000	0.1	5%	68919	AMIW	MSS3 0.1/100/5W	1
C409	CAPACITOR MONOLYTIC CERAMIC	42031-41000	0.1	20%	04222	AVX	SR205C104MAA	
C410	CAPACITOR MONOLYTIC CERAMIC	42031-41000	0.1	20%	04222	. AVX	SR205C104MAA	
C412	CAPACITOR PLASTIC FILM	45042-31502	0.015	20%	68919	WIMA	MKS3 0.015/100/20W	
C413	CAPACITOR ELECTRO 22/25V	48030-02200	22	20%	25088	SIEMENS	81000/22UF/25V	1
C414	CAPACITOR PLASTIC FILM	45042-31502	0.015	20%	68919	WIMA	MKS3 0.015/100/20W	
C415	CAPACITOR TANTALUM 1.5/25V	47031-01590	1.5	20%	31918	3 ITT	TAG 1.5M25	1
C416	CAPACITOR TANTALUM 10/25V	47031-10000	10	20%	31918	3 ITT	TAG 10M25	2
C417		42031-41000	0.1	20%	04222	2 AVX	SR205C104MAA	
C418	CAPACITOR MONOLYTIC CERAMIC	42031-41000	0.1	20%	04222	2 AVX	SR205C104MAA	
C419		42031-41000	0.1		04222		SR205C104MAA	
C420	CAPACITOR ELECTRO 10/40V	48050-01000	10	20%	25088	SIEMENS	85200/10/40V	1
C421	CAPACITOR MONOLYTIC CERAMIC	42031-41000	0.1	20%	04222	2 AVX	SR205C104MAA	
C422	CAPACITOR TANTALUM 10/25V	47031-10000	10	20%	31918	B ITT	TAG 10M25	
C423	CAPACITOR PLASTIC FILM	45042-42201	0.22	5%	68919	P WIMA	MKS2 0.22/63/5W	
D401	SEMICON BRIDGE RECT.FULL WAVE	29006-06000)		5836	1 GI	KBF06	1
D405	SEMICON DIODE GEN PURPOSE	21136-41500)			3 MOTOROLA	1N4150	8
D406	SEMICON DIODE GEN PURPOSE	21136-41500)		1A223	3 MOTOROLA	1N4150	
D407	SEMICON RECTIFIER	21135-54040)			3 MOTOROLA	1N5404	
D409	SEMICON DIODE GEN PURPOSE	21136-4150				3 MOTOROLA	1N4150	_
D410		21207-4744				3 MOTOROLA	1N4744	2
D411	SEMICON DIODE GEN PURPOSE					3 MOTOROLA	1N4150	
D412	SEMICON DIODE GEN PURPOSE	21136-4150)			3 MOTOROLA	1N4150	_
D413	SEMICON RECTIFIER	21135-5404				3 MOTOROLA	1N5404	2
D414	SEMICON DIODE GEN PURPOSE	21136-4150	0			3 MOTOROLA	1N4150	
D415	SEMICON DIODE GEN PURPOSE	21136-4150	0			3 MOTOROLA	1N4150	
D416	SEMICON DIODE GEN PURPOSE	21136-4150	0			3 MOTOROLA	1N4150	
D417	SEMICON DIODE ZENER 1W	21207-4744				3 MOTOROLA	184744	
J401	CONNECTOR FLAT CABLE	72016-1678	0 16PIN			4 ANSLEY	609-1678	1
J402	CONNECTOR HEADER LATCH	78007-2041				4 MOLEX	22-29-2041	4
J403	CONNECTOR HEADER LATCH	78007-2041	0 4 PIN			4 MOLEX	22-29-2041	
J404	CONNECTOR HEADER LATCH	78007-2041	0 4 PIN			4 MOLEX	22-29-2041	
J405	CONNECTOR HEADER LATCH	78007-2041	0 4 PIN			4 MOLEX	22-29-2041	
Q 401	SEMICON TRANSISTOR NPN GP	22522-4401				3 MOTOROLA	2N4401	1
Q 402	SEMICON SHUNT REGULATOR	25922-4310	0			5 TI	TL431CLP	1
Q 403	SEMICON TRANSISTOR PNP GP	22622-4403				23 MOTOROLA	2N4403	1
R401	RESISTOR CF 1/4W	32033-1201		5%		1 A BRADLEY	CB1225	3
R402	RESISTOR WW 3W	34077-0103		5%		1 A BRADLEY	004535	1
R403	RESISTOR CF 1/4W	32033-1501		5%		1 A BRADLEY	CB1525	3
R404	RESISTOR CF 1/4W	32033-3901		5%		21 A BRADLEY	CB3925	1
R405	RESISTOR CF 1/4W	32033-6800	0 680	5%	0112	21 A BRADLEY	CB6815	1

Amber model 3501 Distortion Measuring Set Linear Regulator & Battery Charger Board Part Number 13501-44006

		AMBER	ELECT				MANUFACTURER	QTY
DESIG	DESCRIPTION	PART NUMBER	VALUE	TOL	FSC	MANUFACTURER	PART NUMBER	USED
R406	RESISTOR CF 1/4W	32033-12010	1K2	5%	01121	A BRADLEY	CB1225	
R407	RESISTOR CF 1/4W	32033-15030	150K	5%		A BRADLEY	C81515	2
R408	RESISTOR CF 1/4W	32033-04700	47	5%		A BRADLEY	CB4705	1
R409	RESISTOR CF 1/4W	32033-10020		5%		A BRADLEY	CB1035	7
R410	RESISTOR CF 1/4W	32033-12020	12K	5%		A BRADLEY	CB1235	1
R411	RESISTOR CF 1/4W	32033-15010	1K5	5%		A BRADLEY	CB1525	•
R412	RESISTOR CF 1/4W	32033-10020	10K	5%	01121	A BRADLEY	CB1035	
R414	RESISTOR CF 1/4W	32033-15010	1K5	5%		A BRADLEY	CB1525	
R415	RESISTOR CF 1/4W	32033-10020	10K	5%	01121	A BRADLEY	CB1035	
R416	RESISTOR CF 1/4W	32033-47010	4K7	5%	01121	A BRADLEY	CB4725	4
R417	RESISTOR CF 1/4W	32033-27000	270	5%		A BRADLEY	CB2715	2
R418	RESISTOR CF 1/4W	32033-10030	100K	5%		A BRADLEY	CB1045	5
R419	RESISTOR CF 1/4W	32033-10040	1M0	5%	01121	A BRADLEY	CB1055	4
R420	RESISTOR CF 1/4W	32033-15030	150K	5%	01121	A BRADLEY	CB1515	
R421	RESISTOR CF 1/4W	32033-82020	82K	5%	01121	A BRADLEY	CB8205	1
R422	RESISTOR CF 1/4W	32033-10030	100K	5%	01121	A BRADLEY	CB1045	
R423	RESISTOR CF 1/4W	32033-10040	1M0	5%	01121	A BRADLEY	CB1055	
R424	RESISTOR CF 1/4W	32033-47010	4K7	5%	01121	A BRADLEY	CB4725	
R425	RESISTOR CF 1/4W	32033-47040	4M7	5%	01121	A BRADLEY	CB4755	1
R426	RESISTOR CF 1/4W	32033-10010	1K0	5%	01121	A BRADLEY	CB1025	3
R427	RESISTOR CF 1/4W	32033-10010	1K0	5%	01121	A BRADLEY	CB1025	
R428	RESISTOR CF 1/4W	32033-27000	270	5%	01121	A BRADLEY	CB2715	
R429	RESISTOR CF 1/4W	32033-10010	1K0	5%	01121	A BRADLEY	CB1025	
R430	RESISTOR CF 1/4W	32033-10040	1M0	5%	01121	A BRADLEY	CB1055	
R431	RESISTOR CF 1/4W	32033-10030	100K	5%	01121	A BRADLEY	CB1045	
R432	RESISTOR CF 1/4W	32033-47030	470K	5%	01121	A BRADLEY	CB4745	1
R433	RESISTOR CF 1/4W	32033-10020	10K	5%	01121	A BRADLEY	CB1035	
R434	RESISTOR CF 1/4W	32033-10020	10K	5%	01121	A BRADLEY	CB1035	
R435	RESISTOR MF 1/4W	32035-49910	4K99	1%	24546	CORNING	SMA4-4.99K-1	3
R436	RESISTOR MF 1/4W	32035-11520	11K5	1%	24546	CORNING	RN55D 11.5KR	1
R437	RESISTOR CF 1/4W	32033-47010	4K7	5%	01121	A BRADLEY	CB4725	
R438	RESISTOR CF 1/4W	32033-27010		5%	01121	A BRADLEY	CB2725	3
R439	RESISTOR CF 1/4W	32033-27010		5%	01121	A BRADLEY	CB2725	
R440	RESISTOR MF 1/4W	32035-49910		1%		CORNING	SMA4-4.99K-1	
R441	RESISTOR MF 1/4W	32035-49910		1%	24546	CORNING	SMA4-4.99K-1	
R442	RESISTOR CF 1/4W	32033-15020		5%		A BRADLEY	CB1535	1
R443	RESISTOR CF 1/4W	32033-20030		5%	01121	A BRADLEY	CB2045	1
R444	RESISTOR CF 1/4W	32033-10020		5%	01121	A BRADLEY	CB1035	
R445	RESISTOR CF 1/4W	32033-27010		5%	01121	A BRADLEY	CB2725	
R446	RESISTOR CF 1/4W	32033-10040		5%	01121	A BRADLEY	CB1055	
R447	RESISTOR CF 1/4W	32033-10030		5%	01121	A BRADLEY	CB1045	
R448	RESISTOR CF 1/4W	32033-22010		5%		A BRADLEY	CB2225	1
R449	RESISTOR CF 1/4W	32033-10030		5%	01121	A BRADLEY	CB1045	
R450	RESISTOR CF 1/4W	32033-12010	1K2	5%	01121	A BRADLEY	CB1225	
R451	RESISTOR CF 1/4W	32033-20020		5%		A BRADLEY	CB2035	1
R453	RESISTOR CF 1/4W	32033-10020		5%		A BRADLEY	CB1035	
R454	RESISTOR CF 1/4W	32033-47010	4K7	5%		A BRADLEY	CB4725	
U401	SEMICON QUAD OP AMP	25321-32400				NATIONAL	LM324N	2
U402	SEMICON QUAD OP AMP	25321-32400				NATIONAL	LM324N	
U403	QUAD NORGATE CMOS	24021-40010			3L585		CD4001BPC	1
V401	RESISTOR TRIM CONTROL ST TA	51416-10020				BOURNS	3386P-1-103	2
V403	RESISTOR TRIM CONTROL ST TA	51416-10020	10K	10%	32997	BOURNS	3386P-1-103	

Amber model 3501 Distortion Measuring Set Switching Power Supply Assembly Part Number 13501-75005

DESIG	DESCRIPTION		ELECT VALUE				MANUFACTURER PART NUMBER	QTY USED
	PRINTED CIRCUIT BOARD	13501-45004				AMBER	3501-450-05	
C500	CAPACITOR MONOLYTIC CERAMIC		0.1	20%	04222	AVX	SR205C104MAA	
C501	CAPACITOR TANTALUM 1.5/25V	47031-01590				•	TAG 1.5M25V	1
C502	CAPACITOR MONOLYTIC CERAMIC	42031-41000					SR205C104MAA	
C503	CAPACITOR MONOLYTIC CERAMIC	42031-41000		,			SR205C104MAA	
C504	CAPACITOR MONOLYTIC CERAMIC						SR205C104MAA	
C505	CAPACITOR TANTALUM 10/25V	47031-10000	10	20%	31918	ITT	TAG 10M25	
C506	NOT USED				E4/0/		MUT EF 4077	2
C507	CAPACITOR CERAMIC DISC 50V						MULT EF 103Z	2
C508	CAPACITOR TANTALUM 10/25V	47031-10000	10	20%	31918	ITT	TAG 10M25V	2
C509	NOT USED				F4101		MUT OU 700V	4
C510	CAPACITOR CERAMIC DISC							1 1
C511	CAPACITOR CERAMIC DISC	41033-04700	47P	20%	51406	Murata	GH470K	'
C512	NOT USED							
C513	NOT USED				0/000	****	0000000000	
C514	ON NOTION TONGETTE	42031-41000				AVX	SR205C104MAA	
C515	CAPACITOR MONOLYTIC CERAMIC	42031-41000				AVX	SR205C104MAA	
C516	CAPACITOR ELECT 10/40	48050-01000	10			SIEMENS	85200 10UF 40V	4
C517	CAPACITOR MONOLYTIC CERAMIC	42031-41000	•		04222		SR205C104MAA	
C518	CAPACITOR MONOLYTIC CERAMIC	42031-41000				AVX	SR205C104MAA	
C519	CAPACITOR ELECT 10/40	48050-01000	10			SIEMENS	85200 10UF 40V	
C520	CAPACITOR MONOLYTIC CERAMIC	42031-41000	0.1	-		AVX	SR205C104MAA	
C521	CAPACITOR MONOLYTIC CERAMIC	42031-41000	0.1			. AVX	SR205C104MAA	
C522	CAPACITOR ELECT 10/40	48050-01000	10			SIEMENS	85200 10UF 40V	
C523		42031-41000	0.1			. AVX	SR205C104MAA	
C524	CAPACITOR MONOLYTIC CERAMIC	42031-41000	0.1	20%	04222	. AVX	SR205C104MAA	
C525	CAPACITOR ELECT 10/40	48050-01000	10	20%	25088	SIEMENS	85200 10UF 40V	
C526	CAPACITOR CERAMIC DISC	41033-31000	0.01	20%				
C527	CAPACITOR FILM	45042-42201	0.22	5%	68919	WIMA	MKS2 0.22/63/5	
D501	SEMICON DIODE GEN PRUPOSE	21136-41500)		1A223	MOTOROLA	1N4150	10
D502	SEMICON DIODE GEN PRUPOSE	21136-41500				MOTOROLA	1N4150	
D503	SEMICON DIODE GEN PRUPOSE	21136-41500				MOTOROLA	1N4150	
D504		21136-41500				MOTOROLA	1N4150	
D505	SEMICON DIODE GEN PRUPOSE						1N4150	
D506	SEMICON DIODE GEN PRUPOSE	21136-41500)			MOTOROLA	1N4150	
D507	SEMICON DIODE GEN PRUPOSE	21136-4150				MOTOROLA	1N4150	
D508	SEMICON DIODE GEN PRUPOSE	21136-4150)		1A22	MOTOROLA	1N4150	
D509	SEMICON DIODE GEN PRUPOSE	21136-4150)			MOTOROLA	1N4150	
D510	SEMICON DIODE GEN PRUPOSE	21136-4150)		1A22	3 MOTOROLA	1N4150	
D511	NOT USED							
D512	NOT USED							_
L501	INDUCTOR 270MA	53102-1537	4 15MH		7383	1 HAMMOND	1537-40	7
L502	INDUCTOR CHOKE	53102-1532	0		7383	1 HAMMOND	1532A	1
L503	INDUCTOR 270MA	53102-1537	4 15MH		7383	1 HAMMOND	1537-40	
L504	INDUCTOR 270MA	53102-1537	4 15MH		7383	1 HAMMOND	1537-40	
L505	INDUCTOR 270MA	53102-1537	4 15MH			1 HAMMOND	1537-40	
L506	INDUCTOR 270MA	53102-1537	4 15MH		7383	1 HAMMOND	1537-40	
L507	INDUCTOR 270MA	53102-1537	4 15MH		7383	1 HAMMOND	1537-40	
L508	INDUCTOR 270MA	53102-1537	4 15MH		7383	1 HAMMOND	1537-40	
N501	RESISTOR NET 8 PIN 4 RES SIP	39085-1003			3299	7 BOURNS	4608R-102-104	1
Q 501	SEMICON POWER VMOS FET	22318-1000			1785	6 SILICONIX	VN10KM	2
Q 502	SEMICON POWER MOS FET	22318-1000	0 1A40	٧	1785	6 SILICONIX	VN10KM	
R501	RESISTOR CF 1/4W	32033-2700	0 270	5%	0112	1 ALLEN BRADLE	r CB2715	2

Amber model 3501 Distortion Measuring Set Switching Power Supply Assembly Part Number 13501-75005

DESIG		DESCRIPTION		BER Number	ELECT VALUE	TOL	FSC	MANUFACTURER	MANUFACTURER PART NUMBER	QTY USED
R502	RESISTOR CF	1/4W	32033	-27000	270	5%	01121	ALLEN BRADLEY	CB2715	
R503	RESISTOR CF	1/4W	32033	- 10020	10K	5%		ALLEN BRADLEY		1
R504	RESISTOR CF	1/4W	32033	-10040	1M0	5%	01121	ALLEN BRADLEY	CB1055	1
R505	RESISTOR CF	1/4W	32033	-33010	3K3	5%	01121	ALLEN BRADLEY	CB3325	1
R506	RESISTOR CF	1/4W	32033	-01000	10	5%	01121	ALLEN BRADLEY	CB1005	2
R507	RESISTOR CF	1/4W	32033	-01000	10	5%	01121	ALLEN BRADLEY	CB1005	
T500	TRANSFORMER	HI FREQUENCY	53511	-23753				NOREAST	2375	1
U501	SEMICON CMOS	S DUAL JK FLIP FLOP	24021	-40270			RL585	RCA	CD4027BCP	1
U502	SEMICON CMOS	S HEX INVERTER	24021	-40490			RL585	RCA	CD4049BCP	1

Amber model 3501 Distortion Measuring Set Switching Power Supply Box Assembly Part Number 13501-75000

		AMBER	ELECT			MANUFACTURER	QTY
DESIG	DESCRIPTION	PART NUMBER	VALUE TOL	FSC	MANUFACTURER	PART NUMBER	USED
	HARNESS 403	13501-30403	6"	38047	AMBER	13501-30403	1
	HARNESS (HOOK UP)	13501-30500	2"	38047	AMBER	13501-30500	1
	HARNESS 1005	13501-31005	6"	38047	AMBER	13501-31005	1
	HARNESS 2005	13501-32005	6"	38047	AMBER	13501-32005	1
	POWER SUPPLY BOX	13501-64505		38047	AMBER	13501-64505	1
	POWER SUPPLY BOX COVER	13501-64606		38047	AMBER	13501-64605	1
	POWER SUPPLY BOX INSULATOR	13501-64701		38047	AMBER	13501-64701	2
	SWITCHER HEATSINK ASSEMBLY	13501-65010		38047	AMBER	13501-65010	1
	SWITCHER PCB ASSEMBLY	13501-75005		38047	AMBER	13501-45005	1
	FEEDTHRU CAPS	49000-15010	1500P	51406	MURATA/ERIE	1203-050	8
	MACHINE SCREW PHIL PH 6-32	61111-16031	5/16		VARIOUS	M\$35206-227	6
	MACHINE SPRING NUT	61240-54000	6-32	78553	EATON	TN-226	2
	MACHINE SCREW SELF-TAP #6	61321-36025	3/8	94223	SPAE NAUR	ST372H	8
	WASHER STEP NYLON	61502-56077	#6	86928	SEASTROM	5607-74	2
	WASHER LOCK INTERNAL TOOTH	61520-93660	#6		VARIOUS	AN936-A6	6
	MACHINE SPACER	61699-60813	1"	94223	SPAE NAUR	608-139	1
	FERRITE BEADS	61800-00000			FERROXCUBE	56-59065-4A6	8

Amber Document Number 3501-85000-01

Amber model 3501 Distortion Measuring Set Switcher Heatsink Assembly Part Number 13501-75010

DESIG	DESCRIPTION	AMBER PART NUMBER	ELECT VALUE	TOL	FSC	MANUFACTURER	MANUFACTURER PART NUMBER	QTY USED
	POWER SUPPLY HEATSINK	13501-64803			38047	AMBER	13501-64803	1
	MACHINE SCREW PHIL PH 4-40	61111-14037	3/8			VARIOUS	MS35206-215	4
	WASHER FLAT	61510-14300	#4			VARIOUS	AN960-4	2
	WASHER LOCK INTERNAL TOOTH	61520-36400	#4			VARIOUS	AN936-A4	4
	WASHER STEP INSULATOR	61540-77210	TO-220		13103	THERMALLOY	7721-7PPS	2
	MICA SHEET	61600-43779	TO-220		13103	THERMALLOY	43-77-9	2
Q503	SEMICON FET VMOS POWER N CH	22392-51000	8A40V		59993	IR	IRF510	2
Q 504	SEMICON FET VMOS POWER N CH	22392-51000	8A40V		59993	IR	IRF510	

Amber model 3501 Distortion Measuring Set Trimpot PCB Assembly Part Number 13501-71101

DESIG	DESCRIPTION	AMBER PART NUMBER	ELECT	FSC MANUFACT	MANUFACTURER TURER PART NUMBER	
	***************************************	TAKI NOMBER	**************************************	FSC MANUFACT	UKER PAKI NUMBEK	USED
	HARNESS 1010 FLAT CABLE ASS'Y	13501-31010	9"	38047 AMBER	13501-31010	1
	PCB TRIM POT BOARD	13501-41102		38047 AMBER	13501-41102	1
	CONNECTOR FLAT CABLE BLUE	72016-16780	16PIN	26394 ANSLEY	609-1678	1
V1001	RESISTOR TRIM CONTROL MT SA	51515-10010	1K	23997 BOURNS	3299x-1-102	1
V1002	RESISTOR TRIM CONTROL MT SA	51515-50020	50K	23997 BOURNS	3299x-1-503	
V1003	RESISTOR TRIM CONTROL MT SA	51515-50020	50K	23997 BOURNS	3299x-1-503	
V1004	RESISTOR TRIM CONTROL MT SA	51515-50020	50K	23997 BOURNS	3299x-1-503	
V1005	RESISTOR TRIM CONTROL MT SA	51515-50020	50K	23997 BOURNS	3299x-1-503	5
V1006	RESISTOR TRIM CONTROL MT SA	51515-50020	50K	23997 BOURNS	3299x-1-503	
V1007	RESISTOR TRIM CONTROL MT SA	51515-50000	500	23997 BOURNS	3299x-1-501	1
V1008	RESISTOR TRIM CONTROL MT TA	51516-10000	100	23997 BOURNS	3299W-1-101	1

Amber Document Number 3501-81101-01

Amber model 3501 Distortion Measuring Set Heatsink Assembly Part Number 13501-74010

DESIG	DESCRIPTION	AMBER PART NUMBER	ELECT VALUE	TOL	FSC	MANUFACTURER	MANUFACTURER PART NUMBER	QTY USED
	HEATSINK (3501)	13501-67901	623k		38047	AMBER	13501-67901	1
	MACHINE SCREW PHIL PH 4-40	61111-14031	5/16			VARIOUS	AN507-440-R5	3
	MACHINE NUT HEX	61220-44000	4-40			VARIOUS	MS35649-242	4
	WASHER INTERNAL TOOTH	61520-36400	#4			VARIOUS	AN936-A4	3
	MACHINE COMPRESSION WASHER	61520-68001	#4		94223	SPAE NAUR	680-001	3
	STEP WASHER INSULATOR	61540-77210	TO-220		13103	THERMALLOY	7721-7PPS	3
	MICA SHEET	61600-43779	TO-220		13103	THERMALLOY	43-77-9	3
Q404	SEMICON TRANSISTOR NPN DAR	22522-12201			01295	TI	TIP122	-
Q405	SEMICON TRANSISTOR NPN DAR	22522-12201			01295	TI	TIP122	2
U404	SEMICON 5V REGULATOR 1A	25922-78050	5٧		1A223	Motorola	UA7805UCG	1

Amber Document Number 3501-84010-01

Amber model 3501 Distortion Measuring Set
Transformer Assembly Part Number 13501-74015

DESIG	DESCRIPTION		1BER NUMBER	ELECT VALUE	TOL	FSC	MANUFACTURER	MANUFACTURER	QTY USED
								PART NUMBER	
TRANSFORMER	POWER	13501	1-04001	14V		38047	AMBER	13501-04001	1
TRANSFORMER	BRACKET	13501	-67602			38047	AMBER	13501-67602	1
MACHINE SCR	REW	61132	2-69162	10-24			VARIOUS	MS35206-270	1
MACHINE NUT	•	61220	-11000	#10			VARIOUS	MS35649-XXX	1
TRANSFORMER	MOUNTING PLATE	62700	-35010			38047	AMBER	62700-35010	1
WASHER FLAT	•	62710	0-01000	#10			VARIOUS	AN960-10	1
TRANSFORMER	WASHER INSULATOR	62910	-35010			38047	AMBER	62910-35010	1
CONNECTOR C	RIMP TERMINAL	78009	7-01020	MINI-KK		27264	MOLEX	08-55-0102	2
CONNECTOR H	IOUSING	78010	-20450	4 PIN		27264	MOLEX	22-01-2045	1

Amber Document Number 3501-84015

Amber model 3501 Distortion Measuring Set Input/Output Assembly Part Number 13501-78008

DESIG	DESCRIPTION	AMBER ELECT PART NUMBER VALUE TO	OL	FSC MANUFACTURER		QTY USED
	PRINTED CIRCUIT BOARD	13501-48008		38047 AMBER	3501-480-08	1
	INPUT/OUTPUT PCB BRACKET	13501-66101		38047 AMBER	13501-66101	1
	CABLE TIE WRAP	58750-00001 8"		06915 RICHCO	WIT-18V	2
	KNOB - KEY CAP DARK BROWN	63803-90114		04426 ITW/LICON	803901140000	1
	KNOB - KEY CAP OLIVE	63803-90116		04426 ITW/LICON	803901160000	1
C801	NOT USED					
C802	NOT USED					0
C803	NOT USED					
C804	NOT USED	45042-51001 1.0	109	SEUDO CIEMENO	1.0/400VDC/220VA	C 2
C805	CAPACITOR FILM 400V	45042-51001 1.0			1.0/400VDC/220VA	
C806 C807	CAPACITOR FILM 400V CAPACITOR FILM	45042-42202 0.22			MKS30.22/63/20W	1
CL1	SHORT JUMPER LINK	45045 45505 0155		00717 111121	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2
CL2	SHORT JUMPER LINK					0
CL3	NOT USED					
CL4	NOT USED					
D801	SEMICON LED RECT YELLOW	21531-53124		58361 GI	MV53124	1
D802	SEMICON LED RECT GREEN	21531-52124		58361 GI	MV52124	1
D803	SEMICON LED RECT RED	21531-57124		58361 GI	MV57124	1
D804	SEMICON DIODE ZENER	21207-07461 3.3V	5%	1A223 MOTOROLA	1N746ATR	1
D805	NOT USED					
D806	SEMICON DIODE ZENER	21207-07521 5.6V		9J979 HITACHI	1N752A	1
J801	CONNECTOR HEADER LATCH 4 PIN	78007-20410		27264 MOLEX	22-29-2041	8
J802	CONNECTOR HEADER LATCH 4 PIN	78007-20410		27264 MOLEX	22-29-2041 22-29-2041	
J803	CONNECTOR HEADER LATCH 4 PIN	78007-20410		27264 MOLEX 27264 MOLEX	22-29-2041	
J804	CONNECTOR HEADER LATCH 4 PIN CONNECTOR FLAT CABLE 16 PIN	78007-20410 72016-16780		91506 AUGAT	609-1678	1
J805 J806	CONNECTOR HEADER LATCH 4 PIN	78007-20410		27264 MOLEX	22-29-2041	•
J807	NOT USED	7000, 20410				
J808	CONNECTOR HEADER LATCH 4 PIN	78007-20410		27264 MOLEX	22-29-2041	
1809	CONNECTOR HEADER LATCH 4 PIN	78007-20410		27264 MOLEX	22-29-2041	
J810	NOT USED					
J811	CONNECTOR HEADER LATCH 4 PIN	78007-20410		27264 MOLEX	22-29-2041	
J812	CONNECTOR HEADER LATCH 6 PIN	78007-20610		27264 MOLEX	22-29-2061	1
J813	NOT USED					_
K801	REED RELAY	84801-42301		71707 COTO	4230-12-3001	1
K802	REED RELAY	84801-26531 2A		71707 COTO	2653-12-300	1
L801	NOT USED					0
L802	NOT USED	7/007 79900		ADC	PC388J	2
P801	CONNECTOR SOCKET R-T-S PCB	74003-38800 74003-38800		ADC ADC	PC388J	٤.
P802 R801	CONNECTOR SOCKET R-T-S PCB RESISTOR MF 1W	32061-30100 301	1%	24546 CORNING	r C3000	1
R802	RESISTOR MF 1W	32061-60000 600	1%	24546 CORNING		2
R803	RESISTOR MF 1/4W	32035-16520 16K5	1%	24546 CORNING	SMA4-16.5K-1	1
R804	RESISTOR CF 1/4W	32033-91000 910	5%	01121 ALLEN BRADLE	Y CB9115	1
R805	RESISTOR CF 1/4W	32033-13030 130K		01121 ALLEN BRADLE		1
R806	RESISTOR MF 1/4W	32035-75010 7K5	1%	24546 CORNING	SMA4-7.5K-1	1
R807	NOT USED					
R808	NOT USED					
R81 0	RESISTOR MF 1W	32061-60000 600	1%	24546 CORNING		
R811	NOT USED					
R812	NOT USED					
R813	NOT USED					

Amber model 3501 Distortion Measuring Set Input/Output Assembly Part Number 13501-78008

DESIG	DESCRIPTION	AMBER ELECT PART NUMBER VALUE TOL	P00 MANUFACT: IPT	MANUFACTURER	QTY
	DESCRIPTION	PART NUMBER VALUE TUL	FSC MANUFACTURER	PART NUMBER	USED
R814	NOT USED				
S801	SWITCH CUSTOM ARRAY F2UEE	83116-20000	31918 ITT/SCHADOW	F2UEE	
\$802	SWITCH CUSTOM ARRAY F2UEE	83116-20000	31918 ITT/SCHADOW	F2UEE	4
S803	SWITCH CUSTOM ARRAY FOUEE	83116-60000	31918 ITT/SCHADOW	F6UEE	1
S804	SWITCH CUSTOM ARRAY FZUEE	83116-20000	31918 ITT/SCHADOW	F2UEE	•
S805	SWITCH CUSTOM ARRAY FZUEE	83116-20000	31918 ITT/SCHADOW	F2UEE	
V801	SWITCH ASSEMBLY POT SPDT	51126-25002 25K	12697 CLAIROSTAT	V\$388-25K	1

Amber model 3501 Distortion Measuring Set Front Panel Assembly Part Number 13501-79000

						MANUFACTURER	
DESIG	DESCRIPTION	PART NUMBER				PART NUMBER	
		13501-30801				13501-30801	
	HARNESS 806	13501-30806	16"	38047	AMBER	13501-30801	1
	HARNESS 811	13501-30811	4"	38047	AMBER	13501-30811	1
	HARNESS 812	13501-30812		38047	AMBER	13501-30812	1
	HARNESS 1004	13501-31004	6"	38047	AMBER	13501-31004	1
	FREQUENCY DIAL	13501-42503		38047	AMBER	13501-42503	1
	FRONT PANEL OVERLAY	13501-48701		38047	AMBER	13501-48701	1
	FRONT PANEL UNDERLAY	13501-61005		38047	AMBER	13501-61005	1
	RATIO DRIVE (3501)	13501-61601		38047	AMBER	13501-61601	1
	METER ASSEMBLY	13501-79010	1MA	38047	AMBER	13501-79010	1
	MACHINE SCREW PHIL 4-40 PH	61111-14025	1/4		VARIOUS	MS35206-213	2
	MACHINE HEX NUT	61220-44000	4-40		VARIOUS	MS35649-242	2
	DRESS NUT	61250-70990		09353	C & K	7099	1
	WASHER BNC D STEP	61500-22722	.455	00779	AMP	227223-1	4
	WASHER FLAT FIBER	61501-40000		94223	SPAE NAUR	W-40F	7
	WASHER FLAT	61510-14300	#4		VARIOUS	AN960-4	4
	WASHER INTERNAL TOOTH	61520-36400	#4		VARIOUS	AN936-A4	2
	BUSHING NYLON	61550-56076		86928	SEASTROM	5607-65	5
	KNOB BLACK ROUND	63313-21025	21MM	59270	SIFAM	S210 250	1
	KNOB CAP BLACK	63803-21000	21MM	59270	SIFAM	C210	1
	CONNECTOR PANEL POST BLACK	74001-15170		83330	SMITH	1517	1
	CONNECTOR BNC	77001-79131	GOLD	91836	KINGS	KC79-131	4

Amber model 3501 Distortion Measuring Set Rear Panel Assembly Part Number 13501-74000

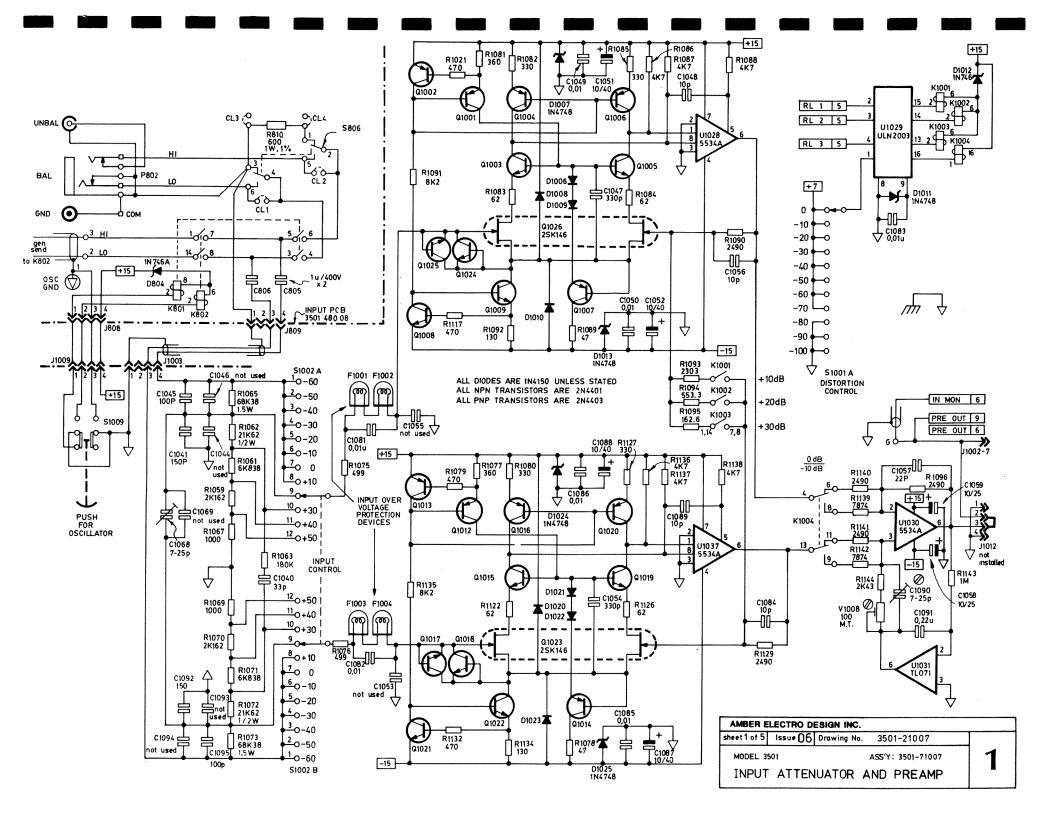
		AMBER	ELECT				MANUFACTURER	QTY
DESIG	DESCRIPTION	PART NUMBER	VALUE	TOL	FSC	MANUFACTURER	PART NUMBER	USED
	DEAD DANCE (CORPORATE)	***************************************						
	REAR PANEL (SCREENED)	13501-67704			38047	AMBER	13501-67704	1
	LINEAR REGULATOR PCB ASSEMBLY	13501-74006			38047	AMBER	13501-74006	1
	HEATSINK ASSEMBLY	13501-74010			38047	AMBER	13501-74010	1
	TRANSFORMER ASSEMBLY	13501-74015			38047	AMBER	13501-74015	1
	MACHINE SCREW PHIL PH 6-32	61111-16037	3/8			VARIOUS	MS35206-228	4
	MACHINE SCREW PHIL PH 6-32	61111-16087	7/8			VARIOUS	MS35206-233	4
	MACHINE SCREW PHIL FH 6-32	61113-16025	1/4			VARIOUS	AN507-632-R4	4
	MACHINE SCREW PHIL FH 6-32	61113-16037	3/8			VARIOUS	AN507-632-6	4
	MACHINE HEX NUT	61220-63200	#6			VARIOUS	MS35649-262	1
	WASHER FLAT	61510-16400	#6			VARIOUS	AN960-6	4
	WASHER LOCK INTERNAL TOOTH	61520-93660	#6			VARIOUS	AN936-A6	9
	RUBBER FEET	65300-00000			94223	SPAE NAUR	RB-187	4
	TERMINAL LUG	67100-2400	#6		94223	SPAE NAUR	WT-24	1
	PLUG BUTTON PLASTIC	67200-00000	BLACK		94223	SPAE NAUR	245-049	6
	CONNECTOR AC POWER FILTER	71000-37200	6A		1N137	SCHAFFNER	FN 372-6/22	1

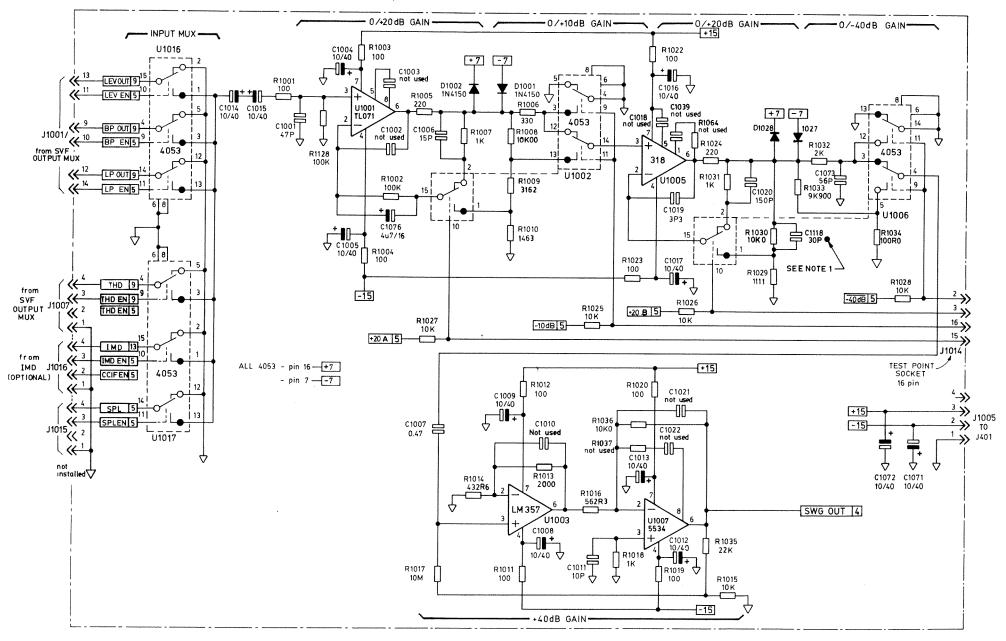
Amber model 3501 Distortion Measuring Set Intermodulation Assembly (Option) Part Number 3501-76003

DESIG	DESCRIPTION	AMBER PART NUMBER	ELECT VALUE	TOL	FSC	MANUFACTURER	MANUFACTURER PART NUMBER	QTY USED
		47504 /4007				AMBER	3501-460-04	1
	PRINTED CIRCUIT BOARD	13501-46003 71008-20839	8 DIN			AUGAT	208-AG39D	1
	CONNECTOR SOCKET IC DIL	71016-21639	16PIN			AUGAT	216-AG39D	6
	CONNECTOR SOCKET IC DIL	73104-20410				MOLEX	22-29-2041	3
0404	CONNECTOR HEADER LATCH CAPACITOR PLASTIC FILM	46000-22030		20%		WIMA	CK068X224K	3
C601	CAPACITOR PLASTIC FILM	45049-22030		20%		WIMA	MKS2/0.22	_
C602 C603	CAPACITOR PLASTIC FILM	45042-47020		10%		WIMA	MKS3/0.047	1
C604	CAPACITOR PLASTIC FILM	45049-22030		20%		WIMA	MKS2/0.22	
C605	CAPACITOR ALUM ELE RAD 10/40	48050-01000	10	20%		SIEMENS	85200/10/40V	5
C606	CAPACITOR ALUM ELE RAD 10/40	48050-01000	10	20%		SIEMENS	85200/10/40V	
C607	CAPACITOR CERAMIC DISC	41033-10030		20%				
C608	CAPACITOR CERAMIC DISC	41033-10030		20%			MULT EF 103Z	2
C609	CAPACITOR TANTALUM 25V	47031-01000	10	20%			COM TAG 10UF 25V	2
C610	CAPACITOR TANTALUM 25V	47121-10050	10	20%				
C611	CAPACITOR ALUM ELE AXIL 100/25	48030-10000	100	20%		SIEMENS	81009/100/25V	2
C612	CAPACITOR ALUM ELE AXIL 100/25	48030-10000	100	20%		SIEMENS	81009/100/25V	
C613	CAPACITOR CERAMIC DESC	41031-10090	10P	20%			GG100K	
C621	CAPACITOR PLASTIC FILM	46000-10030	0.01	5%		WIMA	MKS3 0.01/100/5W	9
C622	CAPACITOR PLASTIC FILM	45043-10020	0.01	5%		WIMA	MKS3 0.01/100/5W	
C623	CAPACITOR PLASTIC FILM	45043-10020	0.01	5%		WIMA	MKS3 0.01/100/5W	
C624	CAPACITOR PLASTIC FILM	45043-10020	0.01	5%		WIMA	MKS3 0.01/100/5W	
C625	CAPACITOR PLASTIC FILM	45043-10020	0.01	5%		WIMA	MKS3 0.01/100/5W	
C626	CAPACITOR PLASTIC FILM	45043-10020	0.01	5%		WIMA	MKS3 0.01/100/5W	
C627	CAPACITOR PLASTIC FILM	45043-10020	0.01	5%		WIMA	MKS3 0.01/100/5W	
C628	CAPACITOR PLASTIC FILM	45043-10020	0.01	5%		WIMA	MKS3 0.01/100/5W	
C629	CAPACITOR CERAMIC DISC	41033-01000	10P	20%			831-000-COGO-100D	2
C630	CAPACITOR CERAMIC DISC	41033-03000	30 P	20%			GH300K	1
C631	CAPACITOR PLASTIC FILM	45042-15020	0.015	5%		AMIW	MKS3 0.015/100/5W	4
C632	CAPACITOR PLASTIC FILM	45043-15020	0.015	5%		WIMA	MKS3 0.015/100/5W	
C633	CAPACITOR PLASTIC FILM	45043-15020	0.015	5%		WIMA	MKS3 0.015/100/5W	
C634	CAPACITOR PLASTIC FILM	45043-15020	0.015	5%		WIMA	MKS3 0.015/100/5W	
C635	CAPACITOR PLASTIC FILM	45042-22020	0.022	10		WIMA	MKS3 0.022/100/20W	1
C636	CAPACITOR PLASTIC FILM	45043-10020	0.01	5%		WIMA	MKS3 0.01/100/5W	
C637	CAPACITOR PLASTIC FILM	45042-68010	6800P	5%		WIMA	FKC3 6800/160/5W	1
C638	CAPACITOR PLASTIC FILM	45042-13300	0.033	5%		WIMA	MKS3 0.033/100/5W	1
C639	CAPACITOR PLASTIC FILM	45042-22010	2200P	5%		WIMA	FKC3 2200/160/5W	2
C640	CAPACITOR PLASTIC FILM	45042-10030	0.1	20%		WIMA	MKS3 0.1/100/20W	
C641	CAPACITOR ALUM ELE RAD 10/40	48050-01000	10	20%		SIEMENS	85200/10/40V	
C642	CAPACITOR PLASTIC FILM	45042-10030	0.1	20%		AMIW	MKS3 0.1/100/20W	2
C644	CAPACITOR ALUM ELE RAD 10/40	48050-01000	10	20%		SIEMENS	85200/10/40 V	
C645	NOT USED							
C646	CAPACITOR ALUM ELE RAD 10/40	47121-10050	10	20%		SIEMENS	85200/10/40V	
C647	NOT USED							
C648	CAPACITOR PLASTIC FILM	45043-22010	2200 P	5%		WIMA	FKC3/2200	
C649	CAPACITOR PLASTIC FILM	45042-10010	1000P	5%		WIMA	FKC3 1000/160/5W	1
C650	CAPACITOR PLASTIC FILM	45042-22000	220P	5%		WIMA	FKC3 220/160/20W	1
D601	SEMICON DIODE GEN PURPOSE	21135-41500				MOTOROLA	1N4150	16
D602	SEMICON DIODE GEN PURPOSE	21135-41500				MOTOROLA	1N4150	

Amber model 3501 Distortion Measuring Set Intermodulation Assembly (Option) Part Number 3501-76003

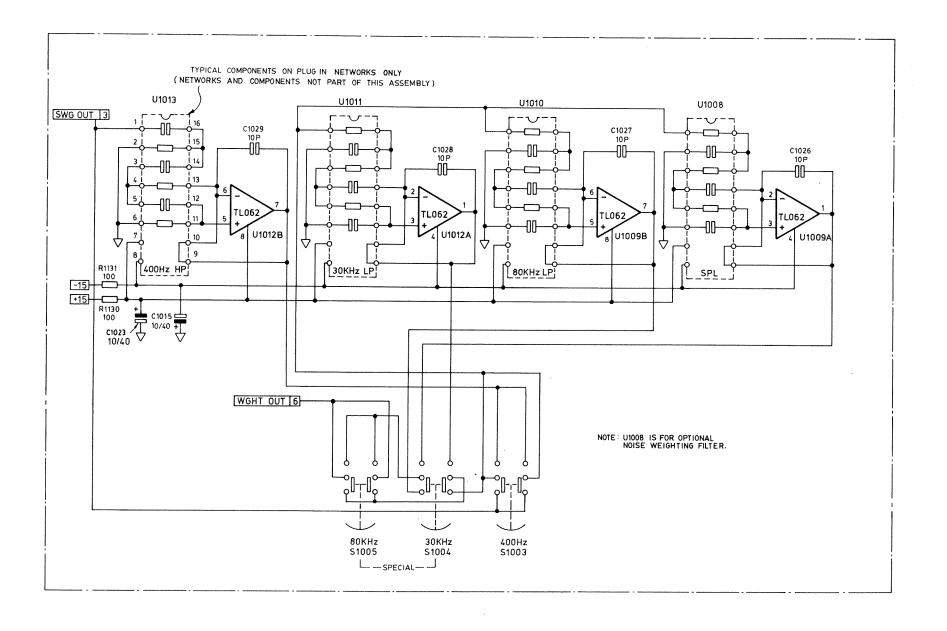
DESIG	DESCRIPTION	AMBER PART NUMBER	ELECT VALUE	TOL	FSC	MANUFACTURER	MANUFACTURER PART NUMBER	QTY USED
D603	SEMICON DIODE GEN PURPOSE	31175 /1500				***************************************	***************************************	
D604	SEMICON DIODE GEN PURPOSE	21135-41500				MOTOROLA	1N4150	
D605	SEMICON DIODE GEN PURPOSE	21135-41500 21135-41500				MOTOROLA	1N4150	
D606	SEMICON DIODE GEN PURPOSE	21135-41500				MOTOROLA	1N4150	
D607	SEMICON DIODE GEN PURPOSE	21135-41500				MOTOROLA	1N4150	
D608	SEMICON DIODE GEN PURPOSE	21135-41500				MOTOROLA MOTOROLA	1N4150	
D609	SEMICON DIODE GEN PURPOSE	21135-41500				MOTOROLA MOTOROLA	1N4150	
D610	SEMICON DIODE GEN PURPOSE	21135-41500				MOTOROLA	1N4150	
D611	SEMICON DIODE GEN PURPOSE	21135-41500				MOTOROLA	1N4150	
D612	SEMICON DIODE GEN PURPOSE	21135-41500				MOTOROLA	1N4150 1N4150	
D613	SEMICON DIODE GEN PURPOSE	21135-41500				MOTOROLA		
D614	SEMICON DIODE GEN PURPOSE	21135-41500				MOTOROLA	1N4150 1N4150	
D615	SEMICON DIODE GEN PURPOSE	21135-41500				MOTOROLA		
D616	SEMICON DIODE GEN PURPOSE	21135-41500				MOTOROLA	1N4150	
J602	CONNECTOR HEADER FLAT CABLE	72016-16780	16DIN			ANSLEY	1N4150 400-1479	
9601	SEMICON FET N CHANNEL	22318-48610	10. 11			MOTOROLA	609-1678 2N4861	1
9602	SEMICON TRANSISTOR NPN GP	22292-44010				MOTOROLA		1
9603	SEMICON SHUNT REGULATOR	25992-43100				HOTOKOLA	2N4401	1
R601	RESISTOR MF 1/4W	32035-10020	10K0	1%		CORNING	TL431CLP SMA4-10K-1	1
R602	RESISTOR MF 1/4W	32035-82520		1%		CORNING	8252F	14
R603	RESISTOR MF 1/4W	32035-10020		1%		CORNING		1
R604	RESISTOR MF 1/4W	32035-12120		1%		CORNING	SMA4-10K-1 RN55D 12.1KR	7
R605	RESISTOR MF 1/4W	32035-12120		1%		CORNING	1212F	3
R606	RESISTOR MF 1/4W	32035-10020		1%		CORNING		
R607	RESISTOR MF 1/4W	32035-47500		1%		CORNING	SMA4-10K-1 RN55D 4775R	7
R608	RESISTOR CF 1/4W	32033-10030		5%		ALLEN BRADLEY		3 3
R609	RESISTOR CF 1/4W	32033-10030		5%		ALLEN BRADLEY	CF1/4 TOOKK	3
R610	RESISTOR CF 1/4W	32033-10030		5%		ALLEN BRADLEY		
R611	RESISTOR CF 1/4W	32033-33030		5%		ALLEN BRADLEY		1
R612	RESISTOR MF 1/4W	32035-33230		1%		CORNING	3323F	1
R613	RESISTOR MF 1/4W	32035-43230		1%		CORNING	33231	1
R614	RESISTOR MF 1/4W	32035-40220		1%		CORNING	RN55D 40.2KR	2
R615	RESISTOR MF 1/4W	32035-10020		1%		CORNING	SMA4-10K-1	_
R616	RESISTOR MF 1/4W	32035-47500	475	1%		CORNING	4750F	
R617	RESISTOR MF 1/4W	32035-47500	475	1%		CORNING	4750F	
R618	RESISTOR CF 1/4W	32033-10020	10K	5%		ALLEN BRADLEY		8
.R619	RESISTOR CF 1/4W	32035-10020	10K	5%		ALLEN BRADLEY		•
R620	RESISTOR CF 1/4W	32035-10020	10K	5%		ALLEN BRADLEY		
R621	RESISTOR MF 1/4W	32035-78710	7K87	1%		CORNING	RN55D 7.87KR	1
R622	RESISTOR MF 1/4W	32035-80610	8K06	1%		CORNING	SMA4-8.06K-1	1
R623	RESISTOR MF 1/4W	32035-66510		1%		CORNING	6651F	1
R624	RESISTOR MF 1/4W	32035-95310		1%		CORNING	9531F	1
R625	RESISTOR MF 1/4W	32035-44210	4K42	1%		CORNING	4421F	1
R626	RESISTOR MF 1/4W	32035-14320	14K3	1%		CORNING	RN55D 14.3KR	1
R627	RESISTOR MF 1/4W	32035-15410		1%		CORNING	1541F	1
R628	RESISTOR MF 1/4W	32035-40220	40K2	1%		CORNING	4022F	•
R629	RESISTOR MF 1/4W	32035-49910	4K99	1%		CORNING	RN555D 4.99KR	2
R630	RESISTOR MF 1/4W	32035-51120	51K1	1%		CORNING	5112F	1
								•

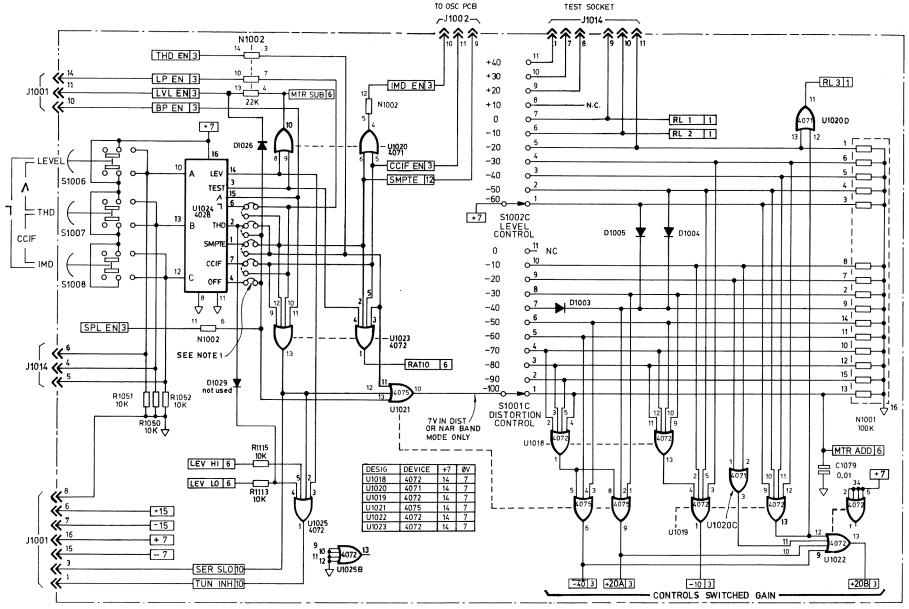

Amber model 3501 Distortion Measuring Set Intermodulation Assembly (Option) Part Number 3501-76003


		AMBER	ELECT				MANUFACTURER	QTY
DESIG	DESCRIPTION	PART NUMBER	VALUE	TOL	FSC	MANUFACTURER	PART NUMBER	USED
	•••••							
R631	RESISTOR CF 1/4W	32033-10050	10M	5%		ALLEN BRADLEY		1
R632	RESISTOR MF 1/4W	32035-10020	10K0	1%		CORNING	SMA4-10K-1	
R633	RESISTOR MF 1/4W	32035-10020	10K0	1%		CORNING	SMA4-10K-1	
R634	RESISTOR MF 1/4W	32035-10020	10K0	1%		CORNING	SMA4-10K-1	
R635	RESISTOR MF 1/4W	32035-10020	10K0	1%		CORNING	SMA4-10K-1	
R636	RESISTOR MF 1/4W	32035-10020	10K0	1%		CORNING	SMA4-10K-1	
R637	RESISTOR MF 1/4W	32035-10020	10K0	1%		CORNING	SMA4-10K-1	
R638	RESISTOR MF 1/4W	32035-10020	10K0	1%		CORNING	SMA4-10K-1	
R639	RESISTOR MF 1/4W	32035-10020	10K0	1%		CORNING	SMA4-10K-1	
R640	RESISTOR MF 1/4W	32035-10020	10K0	1%		CORNING	SMA4-10K-1	
R641	RESISTOR MF 1/4W	32035-10020	10K0	1%		CORNING	SMA4-10K-1	
R642	RESISTOR CF 1/4W	32033-10020	10K	5%		ALLEN BRADLEY	CB1035	
R643	RESISTOR CF 1/4W	32033-10000	100	5%		ALLEN BRADLEY	CB1015	5
R644	RESISTOR MF 1/4W	32035-12120	12K1	1%		CORNING	1212F	
R645	RESISTOR MF 1/4W	32035-20020	20K0	1%		CORNING	RN55D 20KR	1
R646	RESISTOR CF 1/4W	32033-10020	10K	5%		ALLEN BRADLEY	CB1035	
R647	RESISTOR CF 1/4W	32033-10020	10K	5%		ALLEN BRADLEY	CB1035	
R648	RESISTOR CF 1/4W	32033-10020	10K	5%		ALLEN BRADLEY	CB1035	
R649	JUMPER							
R650	RESISTOR MF 1/4W	32035-80600	806	1%		CORNING	SMA4-806R-1	1
R651	RESISTOR CF 1/4W	32033-10000	100	5%		ALLEN BRADLEY	CB1015	
R652	RESISTOR CF 1/4W	32033-10020	10K	5%		ALLEN BRADLEY	CB1035	
R653	RESISTOR MF 1/4W	32035-64900	649	1%		CORNING	RN55D 6490F	1
R654	RESISTOR CF 1/4W	32033-10000	100	5%		ALLEN BRADLEY	CB1015	
R655	RESISTOR CF 1/4W	32033-10000	100	5%		ALLEN BRADLEY	CB1015	
R656	RESISTOR MF 1/4W	32035-49910	4K99	1%		CORNING	4991F	
R657	RESISTOR CF 1/4W	32033-10000	100	5%		ALLEN BRADLEY	CB1015	
RL601	RELAY REED 2A	89100-92512	12V				925A12C2A	2
RL602	RELAY REED 2A	89100-92512	12V				925A12C2A	
U600	SEMICON OP AMP BI-FET DUAL	25111-06200				TI	TL-062CP	
U601	SEMICON OP AMP BI-FET DUAL	25111-06200				TI	TL-062CP	
U602	SEMICON OP AMP BI-FET DUAL	25111-07200				TI	TL-072CP	
U603	SEMICON OP AMP BI-FET DUAL	25111-06200				TI	TL-062CP	
U604	SEMICON OP AMP BI-FET DUAL	25111-06200				TI	TL-062CP	
U605	SEMICON OP AMP BI-FET DUAL	25111-07200				TI	TL-072CP	5
U6 06	SEMICON OP AMP BI-FET DUAL	25111-07200				TI	TL-072CP	
U607	RESISTOR NETWORK	38434-22020	22K	2%			4116R001223	1
U608	SEMICON OP AMP BI-FET DUAL	25111-07200				TI	TL-072CP	
U609	SEMICON OP AMP BI-FET DUAL	25111-07200				TI	TL-072CP	
U610	SEMICON CMOS SWITCH	24021-40530					MC14053BCP	1
V601	RESISTOR TRIM CONTROL ST	51415-10020	10K	10%		BOURNS	3386P-1-103	1

DISTORTION & NOISE MEASUREMENT SET Section 8

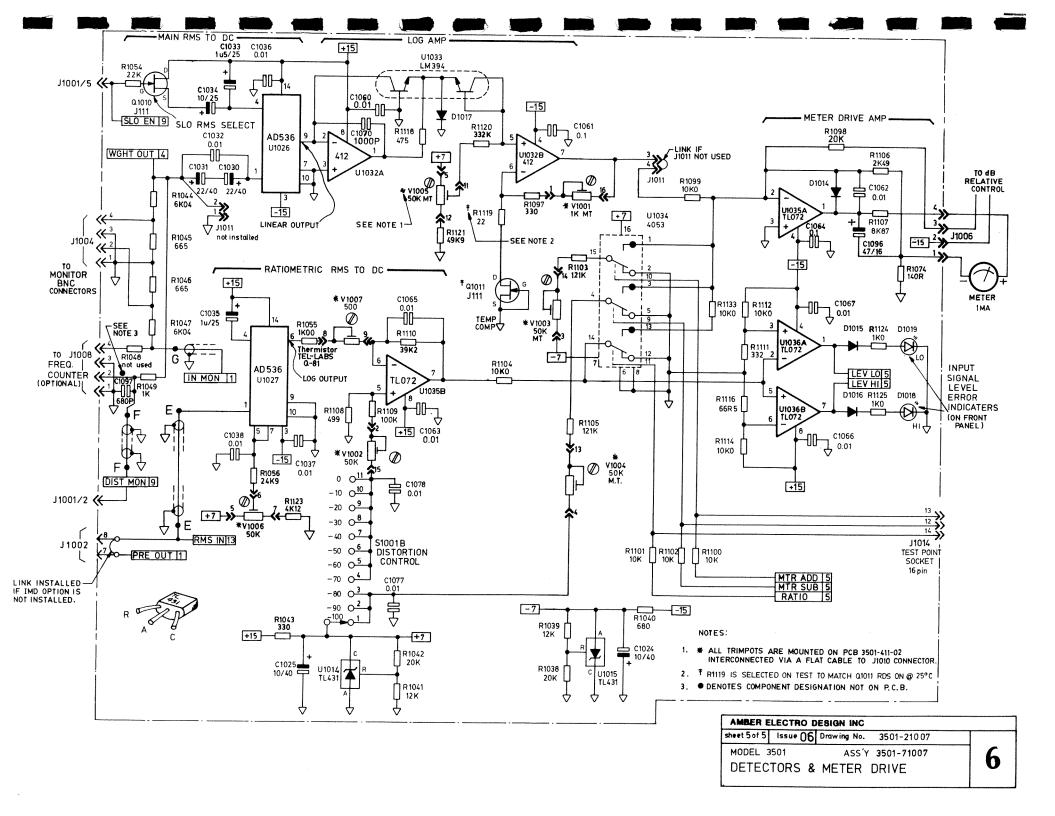
SCHEMATICS

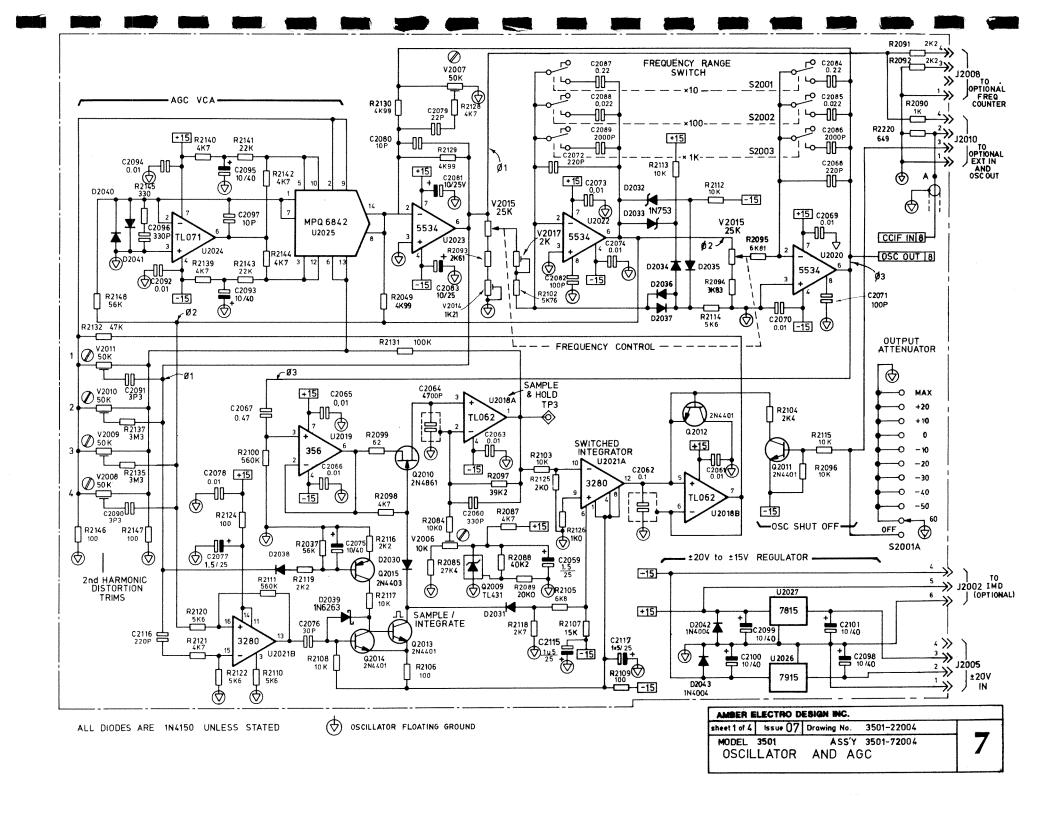

4	Towns Address of the Company	
1	Input Attenuator & Preamp	
3	Input Multiplexer & Switched Gain	
4	Weighting Filters	
5	Function & Gain Logic	
6	Detectors & Meter Drive	
7	Oscillator & AGC	
8	Power Amp & Output Attenuator	
9	Notch Filter	
10	Notch Servo Null	
11	Linear Regulator & Battery Charger	
12	IMD LF Oscillator	
13	IMD Analyzer	
14	Switching Power Supply	
15	Input/Output board	
16	System Interconnect	
17	Signal Path Output Configuration	
18	Signal Path simplified	
20	Rear Panel Schematic	
	Input/Meter Board	3501-410-07
	Filter/Oscillator Board	3501-420-04
	Linear Regulator & Battery Charger	3501-440-06
	Switching Power Supply	3501-450-05
	IMD Board	3501-460-03
	Input/Output Board	3501-480-08

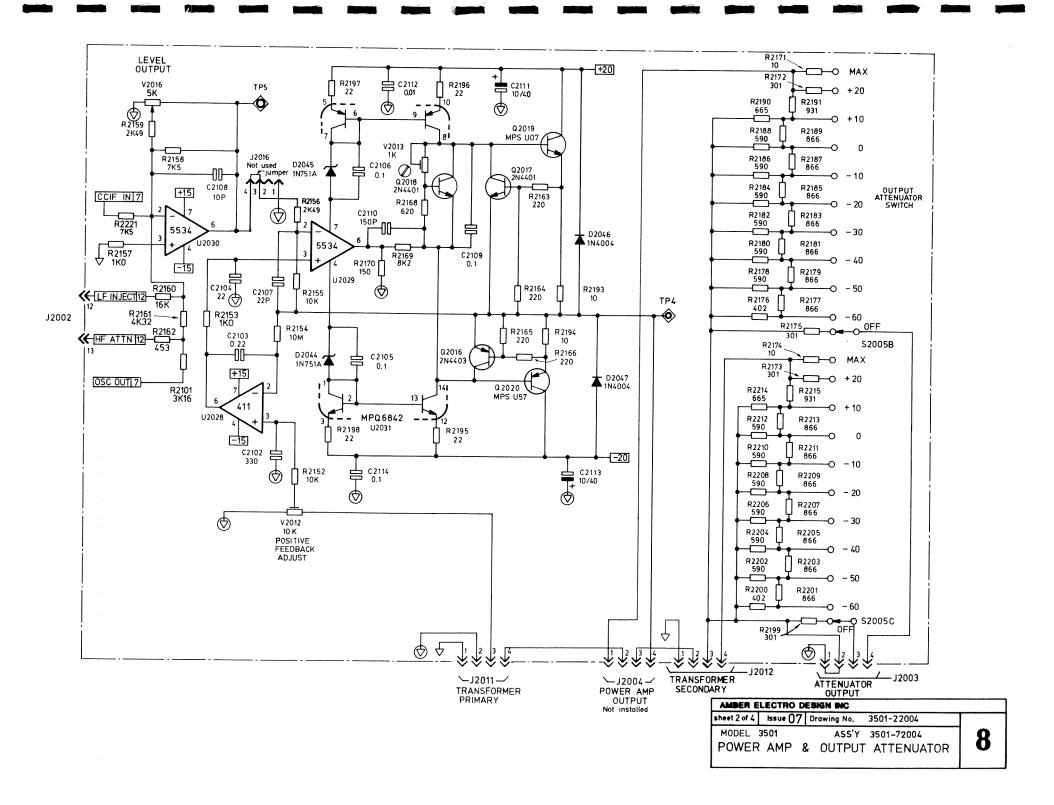


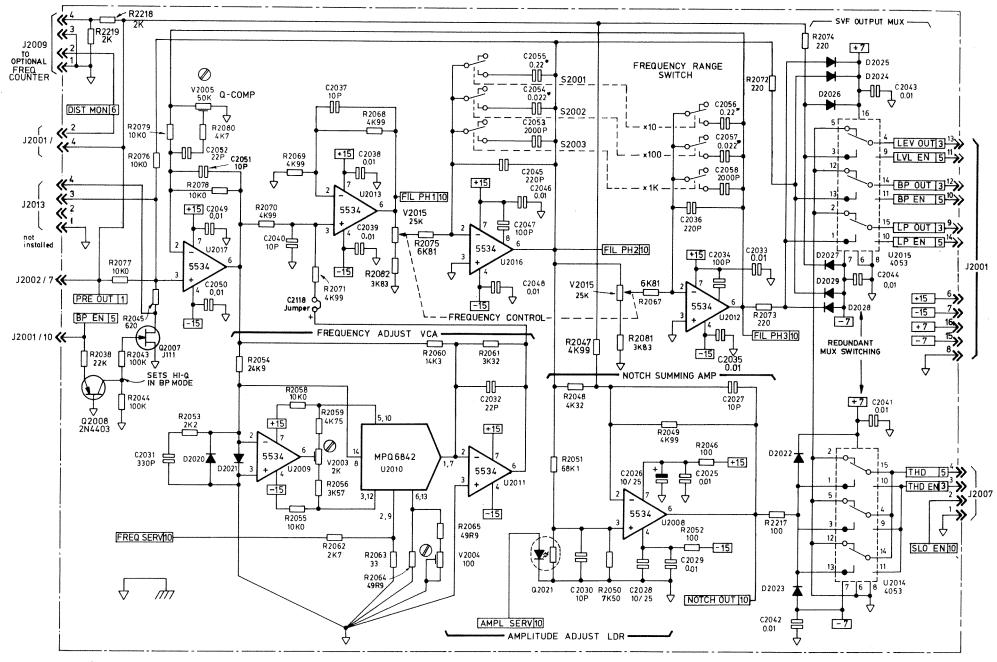
NOTE 1. • DENOTES NO DESIGNATION ON P.C.B.

			SIGN INC	LECTRO DE	AMBER E
		3501-21007	Drawing No.	Issue 06	sheet 2 of 5
ີ		3501-71007			MODEL 3
3	GAIN	SWITCHED	EXER &	MULTIPL	INPUT

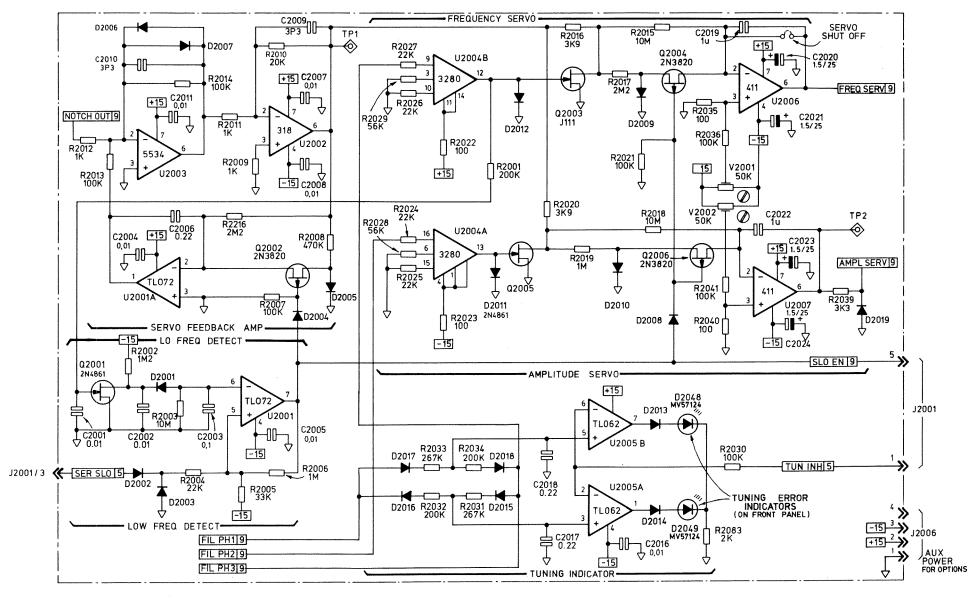

AMBER ELECTRO DESIGN INC.				
sheet 3 of 5	issue 06	Drawing No.	3501-21007	
MODEL :	3501	ASS'Y	: 3501- 71007	1
WEIGH	HTING	FILTERS		4
				1



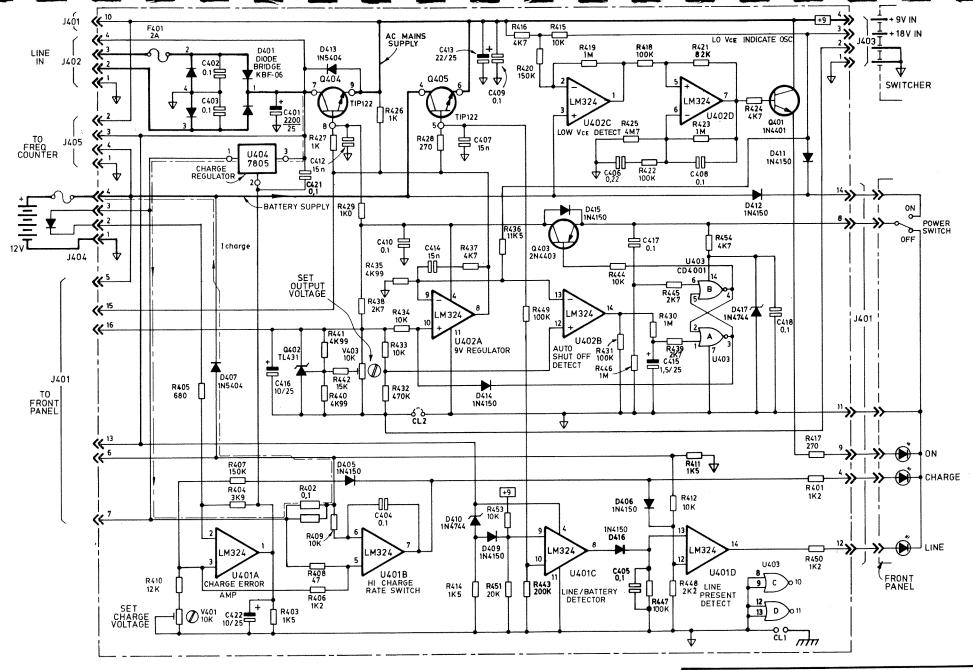

ALL DIODES ARE 1N4150


NOTE 1. JUMPERS SHOWN ARE STANDARD FACTORY SETTINGS FOR MODEL 3501. SEE DOCUMENTATION FOR MODEL 3501a FOR DIFFERENT SETTINGS. ALTERNATE JUMPER MAY BE USED TO PROVIDE DIFFERENT INSTRUMENT FUNCTIONS.

AMBER ELECTRO DESIGN INC.				
sheet 4 of 5	Issue 06	Drawing No.	3501-21007	
MODEL 3	501	ASS Y	: 3501-71007	
FUNC1	TON AN	D GAIN	LOGIC	5



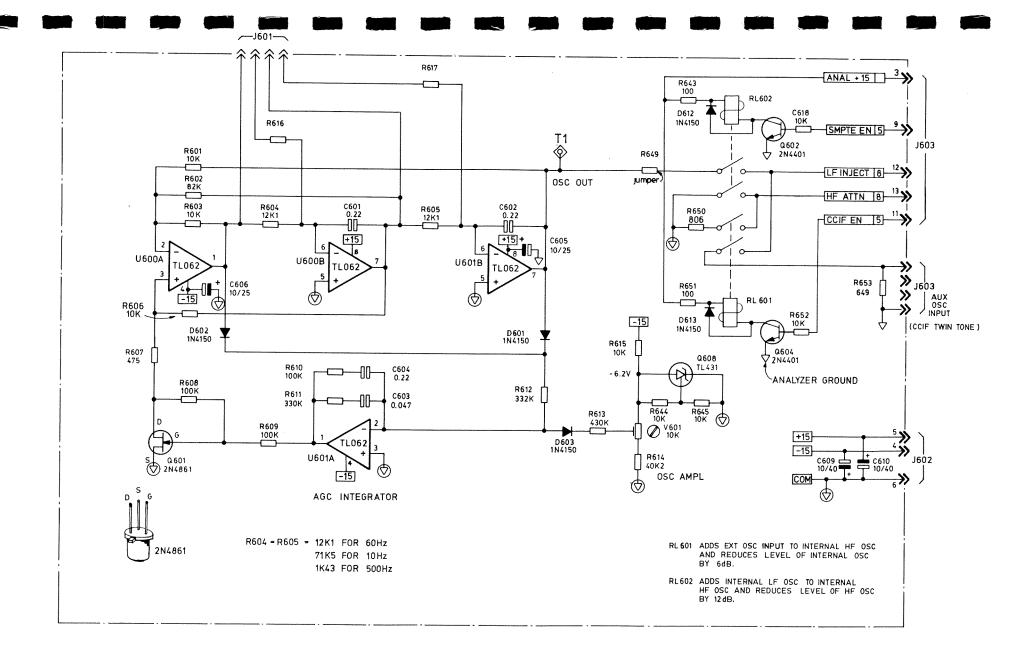
ALL DIODES ARE 1N4150


* SELECTED VALUES

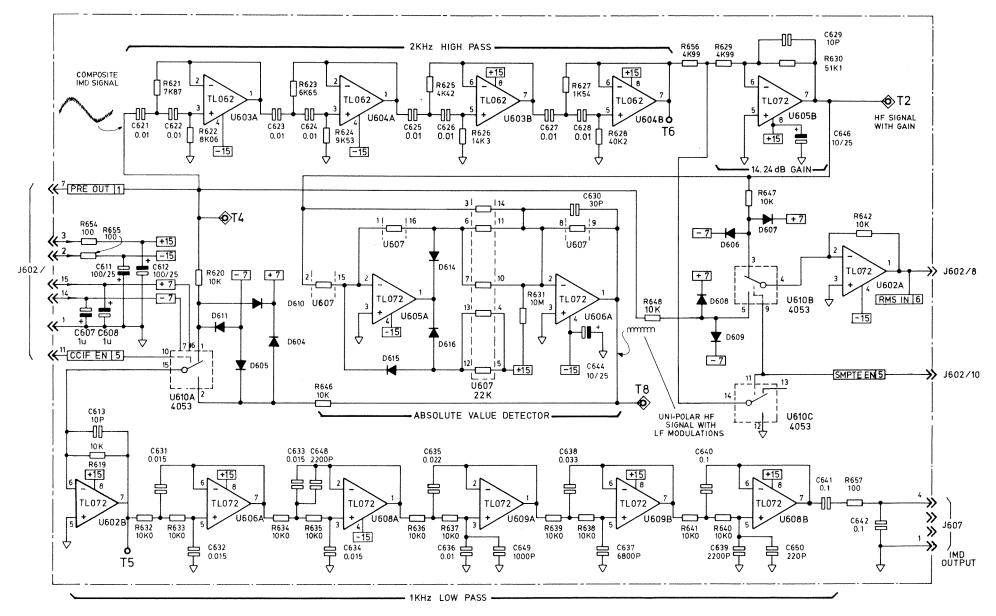
AMBER ELECTRO DESIGN INC					
sheet 3 of 4	Issue 07 Dra	wing No.	3501-22004		
MODEL NOTCH	3501 I FILTER	ASS Y	3501-72004	9	

UNLESS OTHERWISE SPECIFIED ALL DIODES TO BE 1N4150.

AMBER ELECTRO DESIGN INC					
sheet 4 of 4	Issue 07 Dro	wing No. 3501-22004			
MODEL	3501	ASS'Y 3501-72004	10		
NOTCH	H SERVO	NULL	IU		

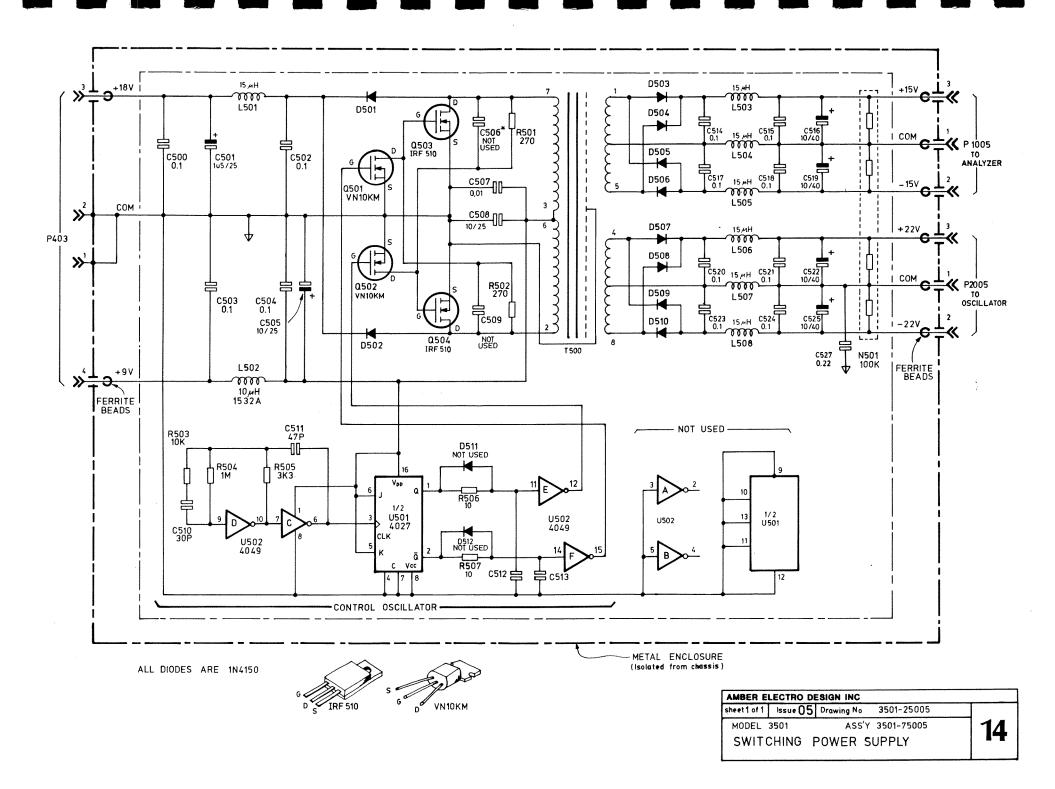


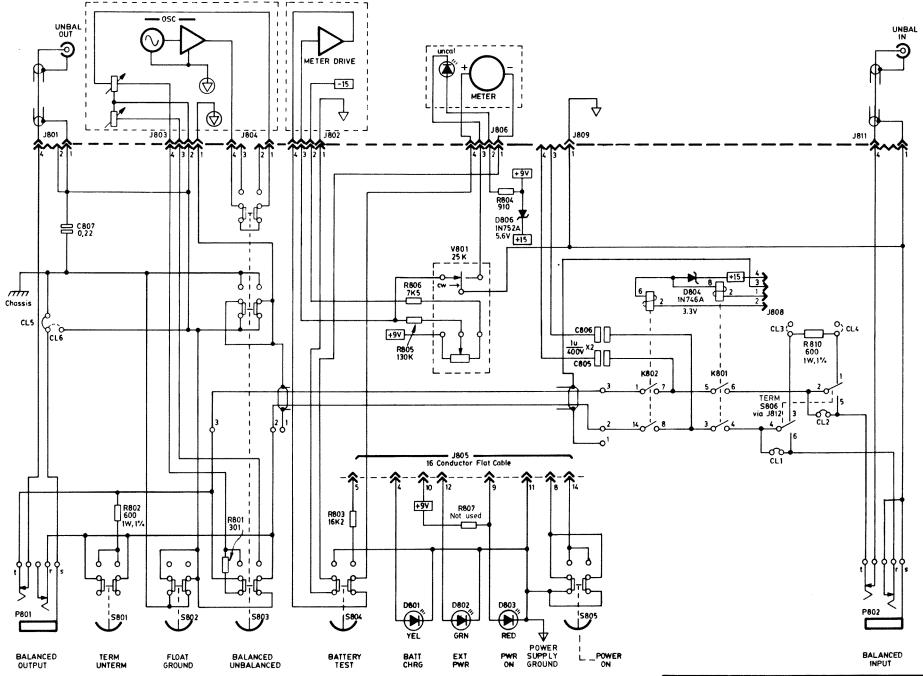
Q404,Q405 AND U404 ON HEATSINK

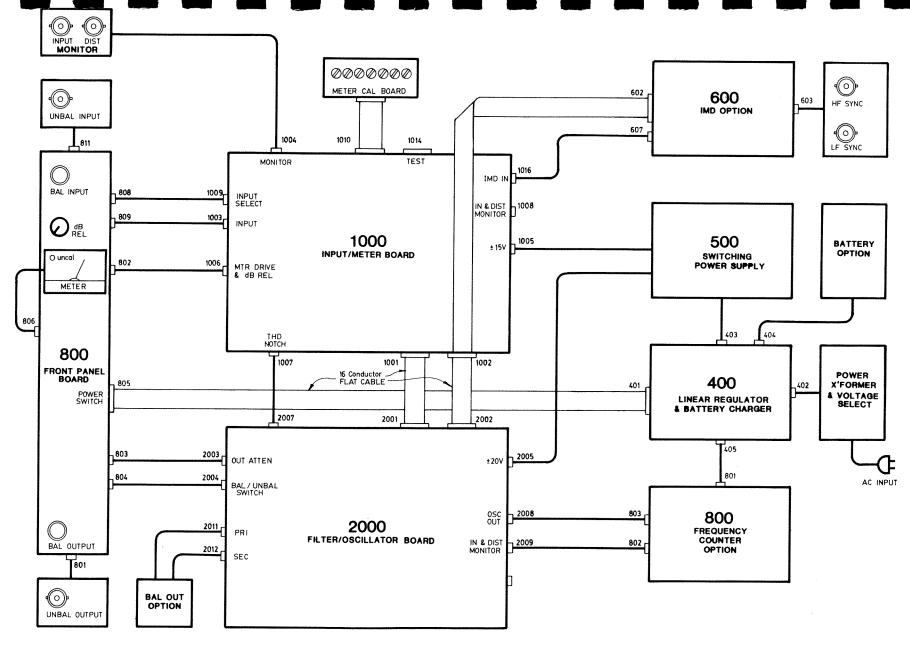

sheet 1 of 1 Issue 06 Drawing No. 3501-24006

MODEL 3501 ASS'Y 3501-74006

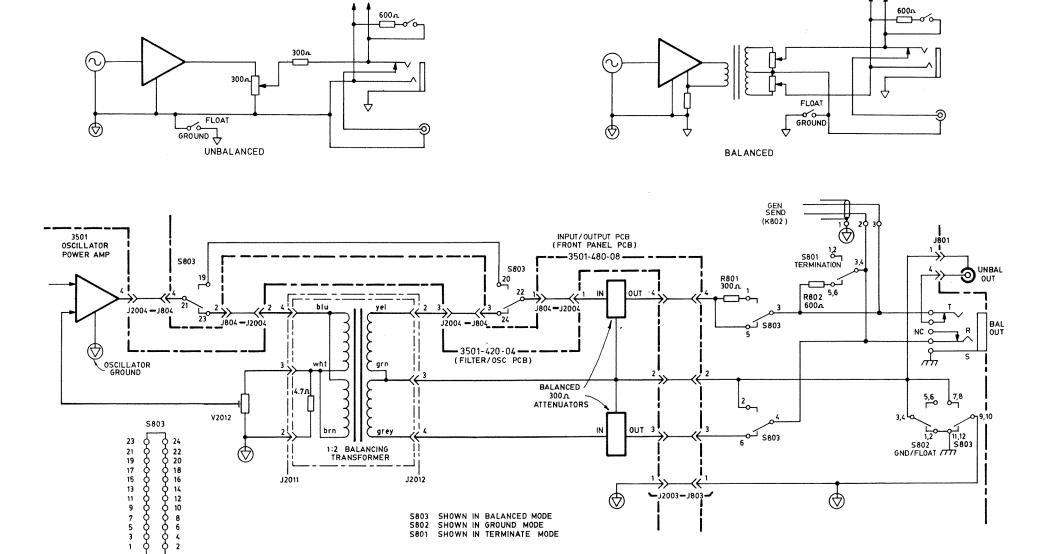
LINEAR REGULATOR AND
BATTERY CHARGER




AMBER ELECTRO DESIGN INC.				
sheet 1 of 2	Issue 03	Drawing No.	3501-26003	
MODEL IMD		ASS'Y ILLATOR	3501-76003	12


ALL DIODES ARE 1N4150

AMBER ELECTRO DESIGN INC.					
sheet 2 of 2	Issue 03	Drawing No.	3501-26003		
MODEL	3501	ASS'Y	3501 - 76003	12	
IMD	ANALYZ	ER		13	


AMBER ELECTRO DESIGN INC.						
heet 1 of 1	Issue 08 Drawing No	3501-2	28008			
MODEL 35	01 /OUTPUT BOARD	ASS'Y	3501-78008	15		

FRONT PANEL

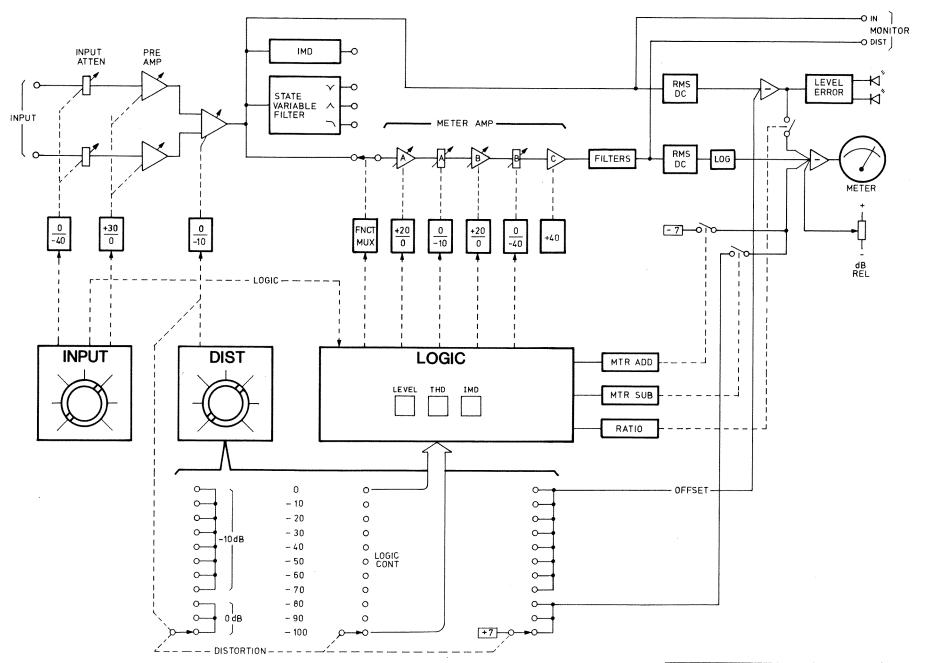
REAR PANEL

AMBER ELECTRO DESIGN INC.				
sheet1 of 1	issue 05	Drawing No.	3501-10000	
MODEL SYS		NTERC	ONNECT	16

└J2003-J803-

PERTAINS TO UNIT WITH SERIAL NOS. 87441604 AND AND ABOVE

S803 SHOWN IN BALANCED MODE S802 SHOWN IN GROUND MODE S801 SHOWN IN TERMINATE MODE

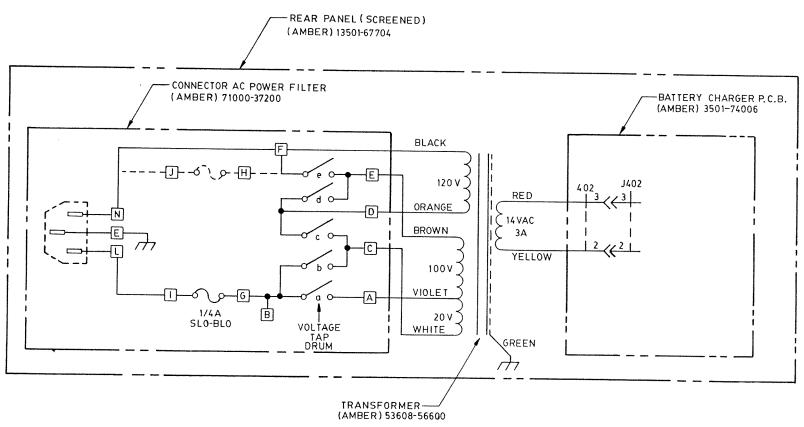

J2012

J2011

SWITCH VIEWED FROM TOP

AMBER ELECTRO DESIGN INC.					
heet1 of1	Issue 05	Drawing No	3501-10001		
MODEL SIGNAL	9501 PATH	оитрит	CONFIGURATION	17	

 \bigcirc

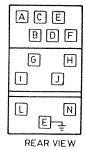

AMBER ELECTRO DESIGN INC.

sheet1 of 1 | Issue 01 | Drawing No. 3501-10002

MODEL 3501

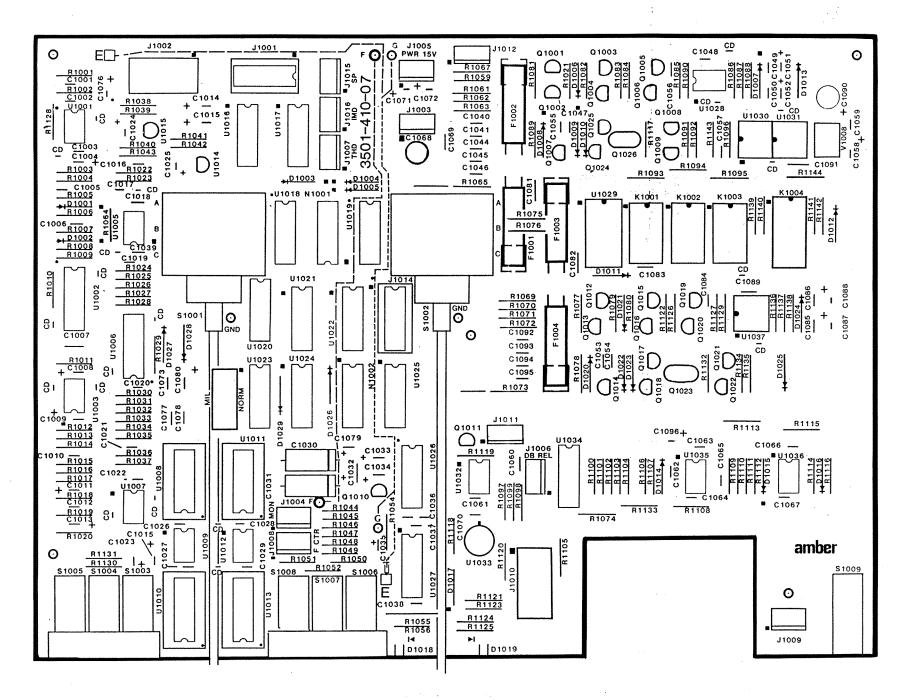
SIGNAL PATH SIMPLIFIED GAIN AND METER DRIVE CIRCUIT

18

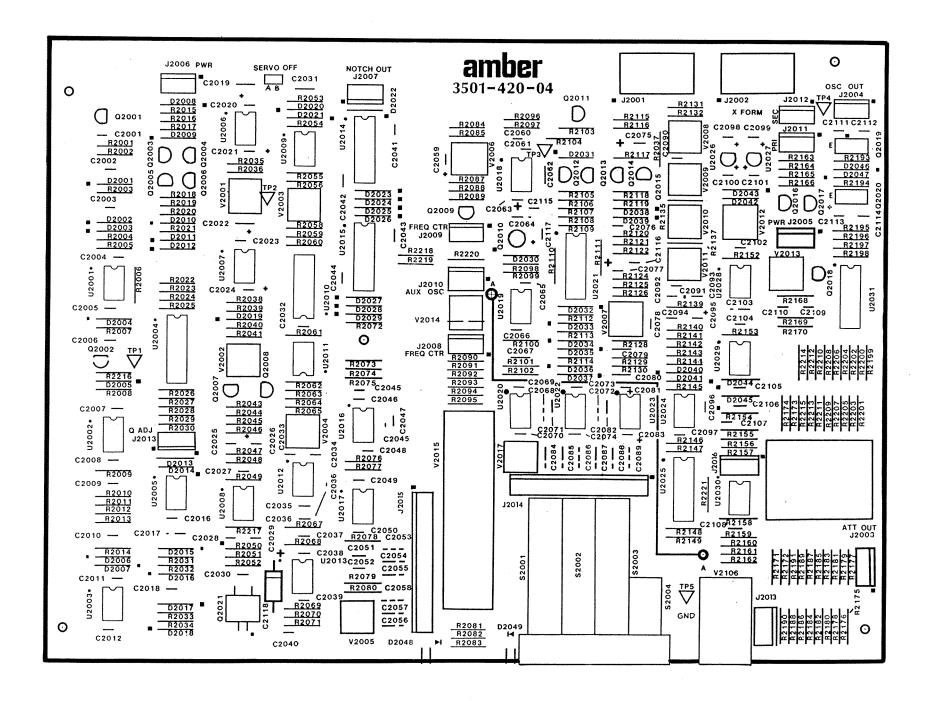

 VOLTAGE
 CONTACT

 100 V
 a.c.e

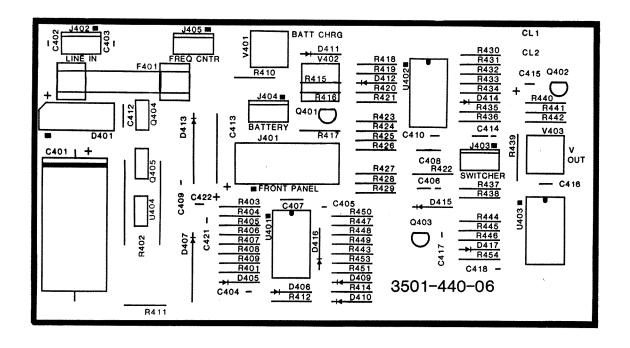
 120 V
 b.c.e

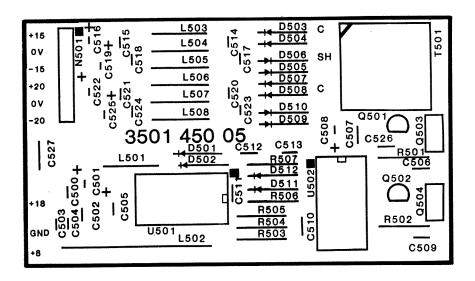

 220 V
 a.d

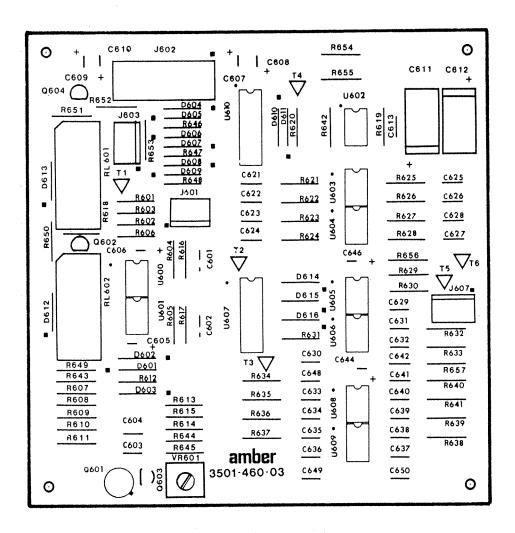
 240 V
 b.d

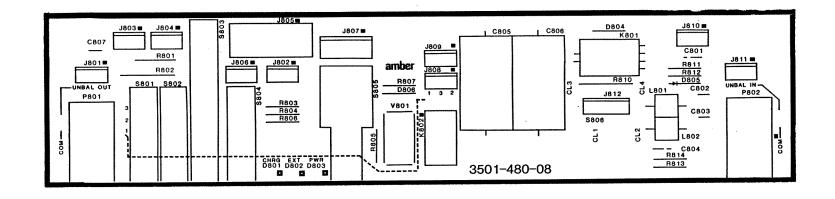


AMBER ELECTRO DESIGN INC.					
sheet 1 of 1	Issue ()1	Drawing No. 3501-24000			
MODEL	3501				
	REAR F	PANEL SCHEMATIC			


20

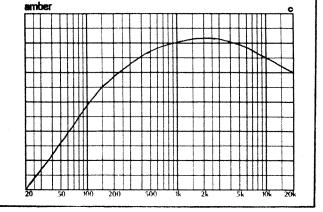

INPUT/METER BOARD ASSEMBLY 13501-71007


FILTER/OSCILLATOR BOARD


LINEAR REGULATOR & BATTERY CHARGER

SWITCHING POWER SUPPLY

IMD BOARD

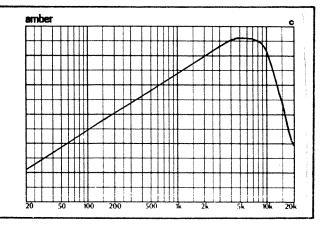


INPUT/OUTPUT BOARD

amber Noise Weighting Filters

Amber model No : 1201 ANSI/IEC "A" Weighting Applicable Standard :

ANSI S-1.4-1971, IEC 123, IEC 179
Application: Audio, tape recorder
and acoustics noise
measurement



Amber model No: 1202

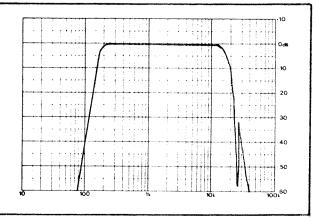
CCIR Weighting (Former "Radio II")
Applicable Standard: CCIR 468-2
(May be set to unity gain reference
at 1kHz or 2kHz)

Application: Audio and tape recorder noise

recorder noise measurement

Amber model No: 1203

Receiver/tuner Band Pass (200Hz to 15kHz


Band Pass plus 19kHz Notch)

Applicable Standard:

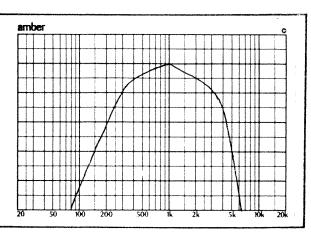
IEEE 185-1975 IHF T-200-1975

Application: Audio, consumer Hi-Fi,

tuner, noise measurement

Amber model No: 1204

Psophometric Weighting (telephone)


Applicable Standard:

CCITT P-53A DIN 45405

Application: Communications

equipment, telephone

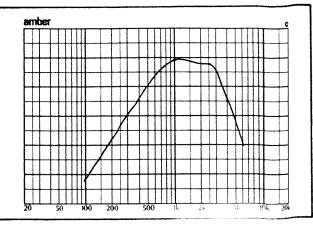
channel noise measurement

amber Noise Weighting Filters

Amber model No: 1205

Telecommunications "C" Message Filter

Applicable Standard:


Bell System Technical Reference

41009 for telephone message circuit

noise measurement

Applications: Telephone circuit

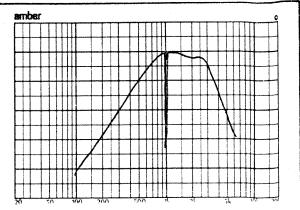
noise measurement

Amber model No: 1206

Telecommunications "C" Message

with 1010Hz notch

Applicable Standard:

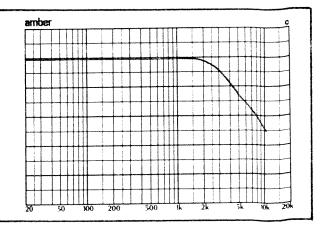

Bell System Technical Reference

41009 for telephone message circuit noise measurement

Applications: Telephone circuit noise

measurement with holding

tone present

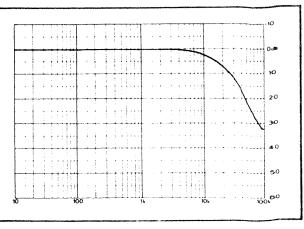

Amber model No : 1207 3kHz Flat Weighting Applicable Standard :

Bell System Technical Reference

41009 for telephone message circuit noise measurement

Applications: Telephone and

communication circuits noise measurements


Amber model No : 1208 15kHz Flat Weighting Applicable Standard :

Bell System Technical Reference

41009 for telephone message circuit noise measurement

Applications : Noise in telephone

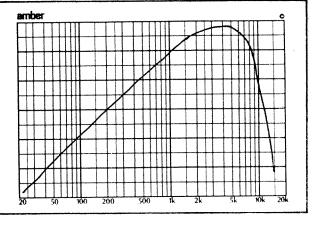
program channels
(broadcast lines)

amber Noise Weighting Filters

Amber model No: 1209

Program Weighting (Former "Radio I")

Applicable Standard: DIN 45405

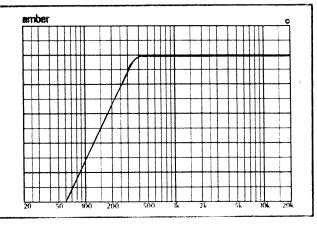

CCITT Rec P53B

Bell System

Pub 41009

Applications: transmission line

noise measurement


Amber model No: 1214

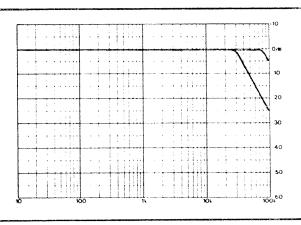
400Hz High Pass.. 3 Pole,

18dB/octave

Applications: Audio measurements,

mains hum rejection

Amber model No: 1223


30kHz Low Pass. 3 Pole, 18dB/octave

Amber model No: 1228

80kHz Low Pass. 3 Pole, 18dB/octave Applications: Audio measurements,

band limited noise

measurements

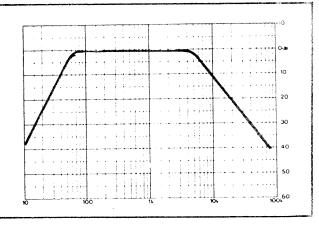
Amber model No: 1219 (specify

parameters)

1 to 3 pole Custom High Pass Filter

Application: rejection of low

frequency noise


Amber model No: 1229 (specify

parameters)

1 to 3 pole Custom Low Pass Filter

Applications : Band limited noise

measurements

ORDERING INFORMATION

MODEL	TYPE	DESCRIPTION
1201	A	ANSI/IEC "A" Network
1202	В	CCIR Filter (specify 1kHz or 2kHz ref)
1203	С	IHF band pass (200Hz to 15kHz/19kHz Notch)
1204	С	Psophometric (CCITT P53A)
1205	С	C Message
1206	С	C Message & Notch
1207	Α	3kHz Flat
1208	Α	15kHz Flat
1209	В	Program (DIN 45405)
1214	A	400Hz HP (3 pole/18dB per octave)
1219	A	1 to 3 pole custom HP (specify frequency)
1223	A	30kHz LP (3 pole/18dB per octave)
1228	A	80kHz LP (3 pole/18dB per octave)
1229	A	1 to 3 pole custom LP (specify frequency)
1231	С	20Hz to 20kHz 12dB/octave Audio
1232	С	Inverse RIAA Filter

All 1200 series weighting filters may be used in any Amber product that provides a standard 16 contact receptacle such as:

```
model 4400A Audio Test Set
model 3500 Distortion Measurement Set
model 3501 Distortion & Noise Measuring System
(Type C filters may present a space problem in the 3500.)
```

The above filters come in one of three possible physical formats:

Type A: Plug-in module. A small 16-pin module about one half cubic inch which plugs directly into the appropriate 16-pin dual-in-line socket on the host equipment. Contains only passive components.

Type B: A small circuit board with attached harness terminating in a 16-pin plug. Board mounts in any convenient location and harness plugs into the host 16-pin dual-in-line socket. Contains active and passive components and a reference level setting adjustment.

Type C: Universal filter circuit board. A 5 inch by 5 inch board with provision for several types of multipole filters. Mounts with four stand-offs. Interconnect harness plugs into host 16-pin dual-in-line socket. Contains several active and passive components as well as calibration controls.